Publications by authors named "Vladimir G Zaikin"

Rationale: 1,4-Cyclohexanedicarboxylic acid and its esters are widely used as building blocks in the production of polymers and copolymers. The properties of such compounds directly depend on the ratio of cis- and trans-isomers in the starting materials. The identification of such stereoisomers by mass spectrometry can be used for the analysis of complex reactions and pyrolysis mixtures.

View Article and Find Full Text PDF

This work highlights the efficient approach to highly sensitive determination of dipeptides that can present in biological liquids at very low and trace quantities. The approach involves preliminary derivatization of peptides with tris(2,4,6-trimethoxyphenyl)-methyl carbenium hexafluoroborate followed by ESI and MALDI high-resolution mass spectrometry. Using model dipeptides with various amino acid compositions and sequences, it was shown that the derivatization reaction proceeded smoothly in mild conditions and gave rise to pink-red colored salt derivatives.

View Article and Find Full Text PDF

In recent years, a special focus is placed on the usage of reactive matrices for analytical matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Since 2003, when the term "reactive matrices" was suggested and the dignity of compounds, possessing dualistic properties as matrices and derivatization agents was demonstrated, corresponding approach has found application in various fields and, in particular, in bioanalysis (metabolomics, lipidomics, etc.).

View Article and Find Full Text PDF

The inclusion of preliminary chemical labeling (derivatization) in the analysis process by such powerful and widespread methods as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a popular and widely used methodological approach. This is due to the need to remove some fundamental limitations inherent in these powerful analytic methods. Although a number of special reviews has been published discussing the utilization of derivatization approaches, the purpose of the present critical review is to comprehensively summarize, characterize and evaluate most of the previously developed and practically applied, as well as recently proposed representative derivatization reagents for ESI-MS and MALDI-MS platforms in their mostly sensitive positive ion mode and frequently hyphenated with separation techniques.

View Article and Find Full Text PDF

Rationale: Direct non-derivatization analysis of organic acids and acidic compounds by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) in positive ion mode is not always possible due to the low ionization efficiency of analytes. Some new efficient deprotonating matrices were suggested that allowed the production of negative ions from acidic compounds during MALDI-MS experiments.

Methods: Various tested carboxyl-containing compounds as well as compounds with acidic properties were mixed with the suggested deprotonating matrices [4-dimethylaminobenzaldehyde (DMABA), N,N-dimethylamino-p-phenylenediamine or 3-aminoquinoline] and applied on a standard MALDI target followed by recording MALDI mass spectra in negative ion mode.

View Article and Find Full Text PDF

This work highlights the discovered in-situ analytical reaction between primary/secondary alcohols and nitrogenous bases (pyridine, quinoline) that involves the substitution of hydroxyl groups for nitrogen-containing charged species and proceeds in an ionization region of Direct Analysis in Real Time mass spectrometry (DART-MS) instrument at gas stream temperature of 150-450 °C. Resulted cations provide strong signals in mass spectra and this ensures high sensitivity of the analysis. Collision induced dissociation of such precursor ions gives rise to characteristic and simple fragmentation mass spectra revealing mainly protonated nitrogenous bases and carbonium cations resulting from the elimination of neutral nitrogen-containing bases.

View Article and Find Full Text PDF

The influence of regio-isomerism of even-electron sulfonium ions on tandem electrospray and matrix-assisted laser desorption/ionization mass spectra recorded by using collision-induced dissociation was investigated. The initial organic sulfides belonged to isomeric thiabicyclane series (substituted 7- and 8-thiabicyclo[4.3.

View Article and Find Full Text PDF

Reaction with α,ω-N,N-dimethylaminoalkylamines (2-dimethylaminoethylamine, 3- dimethylaminopropylamine, 4-dimethylaminobutylamine) to form Schiff bases followed by quaternization of the N,N-dimethylamino group by alkyl (deuteroalkyl) halides to generate fixed-charge fragments is suggested for the characterization of carbonyl compounds by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. As model objects, some aliphatic aldehydes and alicyclic and steroid ketones were involved in the modification. Using gas chromatography mass spectrometry, the first modification stage proved to be quantitative.

View Article and Find Full Text PDF

Some aromatic carbonyl compounds [2,4-dihydroxybenzaldehyde (2,4-DHBA), 2,5- dihydroxyacetophenone (DHAP), 2,3,5-trihydroxybenzaldehyde and 2,4-dinitrobenzaldehyde] were examined as potential reactive matrices for the analysis of mono-, di-, and polyamines by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Although all the above compounds readily and quantitatively react with primary amines to form Schiff bases (the completeness of the reactions was proved by gas chromatography MS of derivatized aliphatic amines), only DHBA and DHAP provide efficient desorption/ionization under MALDI conditions. This means that two these aromatic carbonyl compounds can simultaneously exhibit properties of both derivatization agents and efficient matrices for MALDI-MS analysis.

View Article and Find Full Text PDF

Rationale: Direct analysis of hydroxyl-containing compounds by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) methods is not always possible due to the neutral character of analytes. The suggested fixed-charge derivatization may increase the ionization efficiency for various alcohols and phenols in specific matrix- and surface-activated LDI conditions.

Methods: Aliphatic and steroid alcohols, as well as chlorophenols, were converted into various ammonioacetyl derivatives, containing a covalently bonded charged group, by reaction with bromoacetyl chloride and amine-type compounds such as triethylamine, pyridine or quinoline.

View Article and Find Full Text PDF

The present review covers the main research in the area of mass spectrometry from the 1990s which was about the same time as the Russian Federation emerged from the collapse of the Soviet Union (USSR). It consists of two main parts-application of mass spectrometry to chemistry and related fields and creation and development of mass spectrometric technique. Both traditional and comparatively new mass spectrometric methods were used to solve various problems in organic chemistry (reactivity of gas-phase ions, structure elucidation and problems of identification, quantitative and trace analysis, differentiation of stereoisomers, derivatization approaches etc.

View Article and Find Full Text PDF

Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes.

View Article and Find Full Text PDF

Rationale: Herein we describe a strong matrix effect observed in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectra of silylated glycerol alkoxylates and manifested in the loss of the silyl groups in the presence of carboxyl-containing matrices.

Methods: Commercially available glycerol alkoxylates containing three end OH groups as well as three matrices - 2,5-dihydroxybenzoic acid (DHB), 3-indoleacrylic acid (IAA) and 1,8,9-anthracenetriol (dithranol) - were chosen for the investigation. N,O-Bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane, acetic anhydride and a formylation mixture (formic acid/acetyl chloride) were used for derivatization.

View Article and Find Full Text PDF

Mono-, di- and trialkyl derivatives of 'sulfabenzamide' (N-4-aminophenylsulfonylbenzamide) have been prepared and their electron ionization (EI) mass spectra examined. It is found that the fragmentation of N-alkylsulfabenzamides (alkyl = CH(3) to n-C(5)H(11)) proceeds via a very specific rearrangement process. The proposed mechanism involves an intermediate formation of distonic molecular ions, and the driving force for this process is the formation of stable N-alkylphenylcyanide cations [R-N(+)≡CC(6)H(5)].

View Article and Find Full Text PDF

A new kind of 'para-effect' under electron ionization (EI) conditions has been discovered for a series of bis(perfluoroacyl) derivatives of o-, m- and p-phenylenediamines, -hydroxybenzeneamines and -mercaptobenzeneamines of a common structure RCOX-C(6)H(4)-NHCOR (X = NH, S, O; R = CF(3), C(2)F(5), C(3)F(7)). Only the para-isomers showed successive loss of a radical RCO* and a molecule RCN, leading to very intense peaks in the EI spectra. The composition and the origin of the [M-COR-NCR](+) ions were confirmed by exact mass measurements and linked scan experiments.

View Article and Find Full Text PDF

A method for end-group characterization by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry following preliminary derivatization with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and capryloyl chloride is described and applied to poly(alkylene glycol)s. The MALDI mass spectra of the products revealed peaks of sodiated derivative cations, whose shift by the respective increments allowed the determination of the number of end functional groups with active hydrogens. This approach is particularly efficient for the distinction of cyclic and linear dehydration products among minor components.

View Article and Find Full Text PDF

This is the first of two reviews devoted to derivatization approaches for "soft" ionization mass spectrometry (FAB, MALDI, ESI, APCI) and deals, in particular, with small molecules. The principles of the main "soft" ionization mass spectrometric methods as well as the reasons for derivatizing small molecules are briefly described. Derivatization methods for modification of amines, carboxylic acids, amino acids, alcohols, carbonyl compounds, monosaccharides, thiols, unsaturated and aromatic compounds etc.

View Article and Find Full Text PDF

The review describes on-line derivatization/degradation methods employed in mass spectrometry to solve some structural and analytical problems. Advantages and applications of various positions of reaction systems connected mainly to a mass spectrometer or a gas chromatograph/mass spectrometer are considered. Among these are reaction systems connected directly to the mass spectrometer (reaction mass spectrometry, pyrolysis-mass spectrometry or direct pyrolysis-mass spectrometry); flash-heaters as reactors in gas chromatography/mass spectrometry (GC/MS); in-line chemical reactors located before the chromatographic column [pre-column derivatization/degradation with the use of catalytic reactions, pyrolysis (pyrolysis-GC/MS), degradation in elemental analyzers-isotope ratio mass pectrometry (EA-IRMS)]; on-column derivatization and deuteration; reactor located between the chromatographic column and a mass spectrometer [post-column catalytic derivatization, gas chromatograph-combustion-isotope ratio mass spectrometer (GC-c-IRMS)].

View Article and Find Full Text PDF

The review describes chemical transformations of multifunctional compounds (amino acids and peptides, amino alcohols, amino thiols, hydroxy acids, oxo acids, oxo alcohols, compounds containing simultaneously three or more different groups etc.) by using step-wise or one-step modification or protection of functional groups. Some chemical aspects of mixed derivatization performed for improving the physical-chemical properties and mass spectral characteristics are discussed.

View Article and Find Full Text PDF

The present paper is complementary to the foregoing reviews and describes some additional methods of the derivatization of particular functional groups mainly to enhance the structural information content of electron ionization and chemical ionization mass spectra. Derivatization approaches for the modification of unsaturated compounds, alcoholic, carboxylic, carbonyl, amine and other functional groups, are discussed. Derivatization for separation and quantitative determination of chiral enantiomeric compounds is also considered.

View Article and Find Full Text PDF

This fourth in a series of reviews describes a further common derivatization approach, namely, the formation of cyclic derivatives (cyclic acetals and ketals, boronates, siliconides, carbonates and other miscellaneous derivatives) that can be used to increase volatility and to improve chromatographic and, if possible, the mass spectral properties of various di- and polyfunctional compounds. Some chemical aspects of this type of derivatization are briefly discussed. Characteristic mass spectral features of various cyclic derivatives that are helpful in the structure determination, profiling and quantitation of multifunctional organic compounds are presented.

View Article and Find Full Text PDF

Isobutane and methane chemical ionization (CI) mass spectra of C-17a-epimeric, 17a-substituted 3-methoxyestra-1,3,5(10),8-tetraen-17a-ols and at C-17-epimeric 17-substituted 3-methoxyestra-1,3,5(10)-trien-17-ols, as well as of some their derivatives, have been studied. In each epimeric pair, the peak intensity ratio [MH-H(2)O](+) / [MH](+) is greater for stereoisomers having an axial (or quasi-axial) hydroxyl group. The same regularity in the peak intensity ratio [MH-CH(3)COOH](+) / [MH](+) is valid for acetates in the D-homo series.

View Article and Find Full Text PDF

The present review is devoted to acylation as a widely employed derivatization procedure for protection of OH (alcohols, polyols, phenols, enols), SH (thiols) and NH (amines, amides) groups in order to increase volatility, improve chromatographic properties and, if possible, improve mass spectral properties of derivatives. Chemical aspects of derivatization and various acylating agents are characterized. Mass spectral [electron ionization (EI), chemical ionization (CI) and negative-ion (NI) CI] properties of derivatives that are helpful in identification, structure elucidation and quantitative determination of the analyzed compounds are discussed.

View Article and Find Full Text PDF

This is the first of a series of reviews on the application of derivatization in mass spectrometry. A description is given of advances in silylation as a powerful tool used for increasing the volatility, thermal and thermo-catalytic stability, and chromatographic mobility of polar and unstable organic compounds. In addition to chemical aspects of silylation, mass spectral properties of silyl derivatives useful for structure determination and quantitation of various organic and biologically-active compounds, mainly by GC/MS, are described.

View Article and Find Full Text PDF