Publications by authors named "Vladimir Evstifeev"

Targeted treatment of tuberculosis-associated lung damage requires an understanding of the precise mechanisms of immunopathology. A major obstacle to the longitudinal study of tuberculosis (TB) immunopathogenesis in humans is the lack of serial lung biopsies during disease progression and treatment, which could be used to characterize local immune pathways involved in tissue damage. Understanding of the immunobiology of lung tissue damage in tuberculosis has largely been based on animal models.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a leading cause of infectious disease mortality worldwide, despite the COVID-19 pandemic. The mechanisms by which SARS-CoV-2 affects tuberculosis progression have not yet been established. Here, we compared the level of inflammation in the wall of the tuberculoma and in the parenchymal lung tissue of 30 patients diagnosed with tuberculoma without a history of COVID-19 and 30 patients diagnosed with tuberculoma 3 months after COVID-19.

View Article and Find Full Text PDF

The spread of drug-resistant forms of TB dictates the need for surgical treatment in the complex of anti-tuberculosis measures in Russia. Most often, surgical intervention is performed in the case of pulmonary tuberculoma or fibrotic cavitary tuberculosis (FCT). This study is devoted to the search for biomarkers that characterize the course of disease in surgical TB patients.

View Article and Find Full Text PDF

Mice of the genetically TB-susceptible strain I/St were infected with ∼100 CFU of Mycobacterium tuberculosis strain H37Rv, and after week 3 post-infection treated by inhalations of the NBD peptide selectively blocking NF-κB activation pathway. This therapy resulted in a pronounced attenuation of lung pathology and down-regulation of the expression of several genes encoding major inflammatory molecules, but did not diminish the level of mycobacterial multiplication in the lungs.

View Article and Find Full Text PDF

Earlier we demonstrated that blocking of interleukin 11 (IL-11) by systemic administration of anti-IL-11 antibodies attenuates severity of Mycobacterium tuberculosis infection in mice. The substitution W147A in the IL-11 molecule creates the form of cytokine capable to disrupt gp130/IL11R signaling complex formation, thus serving as a high-affinity specific antagonist of IL-11-mediated signaling. We hypothesized that this mutant form of IL-11 may serve as an effective tool for inhibition of native IL-11 activity in vivo.

View Article and Find Full Text PDF

Using whole genome microarrays, we compared changes in gene expression patterns in the lungs of TB-resistant A/Sn and TB-susceptible I/St mice at day 14 following infection with Mycobacterium tuberculosis H37Rv. Analyses of differentially expressed genes for representation of gene ontology terms and activation of regulatory pathways revealed interstrain differences in antigen presentation, NK, T and B cell activation pathways. In general, resistant A/Sn mice exhibited a more complex pattern and stronger activation of host defense pathways compared to the TB-susceptible I/St mouse strain.

View Article and Find Full Text PDF

IL-11 is multifunctional cytokine whose physiological role in the lungs during pulmonary tuberculosis (TB) is poorly understood. Here, using in vivo administration of specific antibodies against IL-11, we demonstrate for the first time that blocking IL-11 diminishes histopathology and neutrophilic infiltration of the lung tissue in TB-infected genetically susceptible mice. Antibody treatment decreased the pulmonary levels of IL-11 and other key inflammatory cytokines not belonging to the Th1 axis, and down-regulated IL-11 mRNA expression.

View Article and Find Full Text PDF

Mutations in the btk gene encoding Bruton's tyrosine kinase cause X-linked immune deficiency, with impaired B lymphocyte function as the major phenotype. Earlier, we demonstrated that CBA/N-xid mice, unlike the wild-type CBA mice, were not protected by bacillus Calmette-Guérin (BCG) vaccination against tuberculosis infection. Because IFN-gamma-producing T cells and activated macrophages are key elements of antituberculosis protection, it remained unclear how the mutation predominantly affecting B cell functions interferes with responses along the T cell-macrophage axis.

View Article and Find Full Text PDF

Posttranslational modification of proteins with farnesyl and geranylgeranyl isoprenoids is a widespread phenomenon in eukaryotic organisms. Isoprenylation is conferred by three protein prenyltransferases: farnesyl transferase (FTase), geranylgeranyl transferase type-I (GGTase-I), and Rab geranylgeranyltransferase (RabGGTase). Inhibitors of these enzymes have emerged as promising therapeutic compounds for treatment of cancer, viral and parasite originated diseases, as well as osteoporosis.

View Article and Find Full Text PDF