Publications by authors named "Vladimir E Bondarenko"

The analog Hopfield neural network with time delay and random connections has been studied for its similarities in activity to human electroencephalogram and its usefulness in other areas of the applied sciences such as speech recognition, image analysis, and electrocardiogram modeling. Our goal here is to understand the mechanisms that affect the rhythmic activity in the neural network and how the addition of a Gaussian noise contributes to the network behavior. The neural network studied is composed of ten identical neurons.

View Article and Find Full Text PDF

Caveolae are tiny invaginations in the sarcolemma that buffer extra membrane and contribute to mechanical regulation of cellular function. While the role of caveolae in membrane mechanosensation has been studied predominantly in non-cardiomyocyte cells, caveolae contribution to cardiac mechanotransduction remains elusive. Here, we studied the role of caveolae in the regulation of Ca signaling in atrial cardiomyocytes.

View Article and Find Full Text PDF

Mouse models of heart failure are extensively used to research human cardiovascular diseases. In particular, one of the most common is the mouse model of heart failure resulting from transverse aortic constriction (TAC). Despite this, there are no comprehensive compartmentalized mathematical models that describe the complex behavior of the action potential, [Ca] transients, and their regulation by β- and β-adrenergic signaling systems in failing mouse myocytes.

View Article and Find Full Text PDF

Various experimental mouse models are extensively used to research human diseases, including atrial fibrillation, the most common cardiac rhythm disorder. Despite this, there are no comprehensive mathematical models that describe the complex behavior of the action potential and [Ca] transients in mouse atrial myocytes. Here, we develop a novel compartmentalized mathematical model of mouse atrial myocytes that combines the action potential, [Ca] dynamics, and β-adrenergic signaling cascade for a subpopulation of right atrial myocytes with developed transverse-axial tubule system.

View Article and Find Full Text PDF

The β-adrenergic regulation of cardiac myocyte contraction plays an important role in regulating heart function. Activation of this system leads to an increased heart rate and stronger myocyte contraction. However, chronic stimulation of the β-adrenergic signaling system can lead to cardiac hypertrophy and heart failure.

View Article and Find Full Text PDF

Sodium ion channel is a membrane protein that plays an important role in excitable cells, as it is responsible for the initiation of action potentials. Understanding the electrical characteristics of sodium channels is essential in predicting their behavior under different physiological conditions. We investigated several Markov models for the human cardiac sodium channel Na1.

View Article and Find Full Text PDF

Transgenic (TG) mice overexpressing β-adrenergic receptors (β-ARs) demonstrate enhanced myocardial function, which manifests in increased basal adenylyl cyclase activity, enhanced atrial contractility, and increased left ventricular function in vivo. To gain insights into the mechanisms of these effects, we developed a comprehensive mathematical model of the mouse ventricular myocyte overexpressing β-ARs. We found that most of the β-ARs are active in control conditions in TG mice.

View Article and Find Full Text PDF

A failing heart differs from healthy hearts by an array of symptomatic characteristics, including impaired Ca transients, upregulation of Na/Ca exchanger function, reduction of Ca uptake to sarcoplasmic reticulum, reduced K currents, and increased propensity to arrhythmias. While significant efforts have been made in both experimental studies and model development to display the causes of heart failure, the full process of deterioration from a healthy to a failing heart yet remains deficiently understood. In this paper, we analyze a highly detailed mathematical model of mouse ventricular myocytes to disclose the key mechanisms underlying the continual transition towards a state of heart failure.

View Article and Find Full Text PDF

The β- and β-adrenergic signaling systems play different roles in the functioning of cardiac cells. Experimental data show that the activation of the β-adrenergic signaling system produces significant inotropic, lusitropic, and chronotropic effects in the heart, whereas the effects of the β-adrenergic signaling system is less apparent. In this paper, a comprehensive compartmentalized experimentally based mathematical model of the combined β- and β-adrenergic signaling systems in mouse ventricular myocytes is developed to simulate the experimental findings and make testable predictions of the behavior of the cardiac cells under different physiological conditions.

View Article and Find Full Text PDF

The β1-adrenergic signaling system is one of the most important protein signaling systems in cardiac cells. It regulates cardiac action potential duration, intracellular Ca(2+) concentration ([Ca(2+)]i) transients, and contraction force. In this paper, a comprehensive experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is explored to simulate the effects of moderate stimulations of β1-adrenergic receptors (β1-ARs) on the action potential, Ca(2+) and Na(+) dynamics, as well as the effects of inhibition of protein kinase A (PKA) and phosphodiesterase of type 4 (PDE4).

View Article and Find Full Text PDF

The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca(2+)]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure.

View Article and Find Full Text PDF

Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity, Ca(2+) dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based on our previously published comprehensive models of action potential and Ca(2+) handling mechanisms. The model was verified with extensive experimental data on mouse myocyte contraction at room temperature.

View Article and Find Full Text PDF

Transgenic mice overexpressing tumor necrosis factor-α (TNF-α mice) possess many of the features of human heart failure, such as dilated cardiomyopathy, impaired Ca(2+) handling, arrhythmias, and decreased survival. Although TNF-α mice have been studied extensively with a number of experimental methods, the mechanisms of heart failure are not completely understood. We created a mathematical model that reproduced experimentally observed changes in the action potential (AP) and Ca(2+) handling of isolated TNF-α mice ventricular myocytes.

View Article and Find Full Text PDF

Kv4 (Shal) potassium channels are responsible for the transient outward K(+) currents in mammalian hearts and central nervous systems. Heteropoda toxin 2 (HpTx2) is an inhibitor cysteine knot peptide toxin specific for Kv4 channels that inhibits gating of Kv4.3 in the voltage-dependent manner typical for this type of toxin.

View Article and Find Full Text PDF

Kv1.4 channels are Shaker-related voltage-gated potassium channels with two distinct inactivation mechanisms. Fast N-type inactivation operates by a ball-and-chain mechanism.

View Article and Find Full Text PDF

Mouse hearts have a diversity of action potentials (APs) generated by the cardiac myocytes from different regions. Recent evidence shows that cells from the epicardial and endocardial regions of the mouse ventricle have a diversity in Ca(2+) handling properties as well as K(+) current expression. To examine the mechanisms of AP generation, propagation, and stability in transmurally heterogeneous tissue, we developed a comprehensive model of the mouse cardiac cells from the epicardial and endocardial regions of the heart.

View Article and Find Full Text PDF

Kv4.3, with its complex open- and closed-state inactivation (CSI) characteristics, is a primary contributor to early cardiac repolarization. The two alternatively spliced forms, Kv4.

View Article and Find Full Text PDF

Heteropoda venatoria toxin 2 (HpTx2) is an inhibitor cystine knot (ICK)-gating modifier toxin that selectively inhibits Kv4 channels. To characterize the molecular determinants of interaction, we performed alanine scanning of the Kv4.3 S3b region.

View Article and Find Full Text PDF

The molecular heterogeneity of repolarizing currents produces significant spatial heterogeneity and/or dispersion of repolarization in many mammalian cardiac tissues. Transgenic mice are prominent experimental models for the study of the molecular basis of repolarization and arrhythmias. However, it is debated whether the small mouse heart can sustain physiologically relevant heterogeneity of repolarization.

View Article and Find Full Text PDF

Ca(+)-calmodulin (Ca(2+)-CaM)-dependent protein kinase II (Ca(2+)/CaMKII) is an important regulator of cardiac ion channels, and its inhibition may be an approach for treatment of ventricular arrhythmias. Using the two-electrode voltage-clamp technique, we investigated the role of W-7, an inhibitor of Ca(2+)-occupied CaM, and KN-93, an inhibitor of Ca(2+)/CaMKII, on the K(v)4.3 channel in Xenopus laevis oocytes.

View Article and Find Full Text PDF

Voltage-gated K(+) channels exist in vivo as multiprotein complexes made up of pore-forming and ancillary subunits. To further our understanding of the role of a dipeptidyl peptidase-related ancillary subunit, DPP10, we expressed it with Kv4.3 and Kv1.

View Article and Find Full Text PDF

Kv4.3 inactivation is a complex multiexponential process, which can occur from both closed and open states. The fast component of inactivation is modulated by the N-terminus, but the mechanisms mediating the other components of inactivation are controversial.

View Article and Find Full Text PDF

Kv4 voltage-gated K(+) channels are responsible for transient K(+) currents in the central nervous system and in the heart. HpTx2 is a peptide toxin that selectively inhibits these currents; making it a useful probe for understanding Kv4 channel structure and drug binding. Therefore, we developed a method to produce large amounts of recombinant HpTx2.

View Article and Find Full Text PDF

Oscillatory activity in the central nervous system is associated with various functions, like motor control, memory formation, binding, and attention. Quasiperiodic oscillations are rarely discussed in the neurophysiological literature yet they may play a role in the nervous system both during normal function and disease. Here we use a physical system and a model to explore scenarios for how quasiperiodic oscillations might arise in neuronal networks.

View Article and Find Full Text PDF

We have developed a mathematical model of the mouse ventricular myocyte action potential (AP) from voltage-clamp data of the underlying currents and Ca2+ transients. Wherever possible, we used Markov models to represent the molecular structure and function of ion channels. The model includes detailed intracellular Ca2+ dynamics, with simulations of localized events such as sarcoplasmic Ca2+ release into a small intracellular volume bounded by the sarcolemma and sarcoplasmic reticulum.

View Article and Find Full Text PDF