Using a volumetric technique, a T-P diagram of phase transformations between the hydrogen-rich clathrate hydrate (sII phase), hydrogen-filled ice II (C(1) phase), and the liquid (L) is studied in the H(2)O-H(2) system at pressures up to 4.7 kbar and temperatures from -22 to +15 degrees C. The volume and entropy effects of these transformations are established in the vicinity of the triple point of the L + sII + C(1) equilibrium located at P = 3.
View Article and Find Full Text PDFUsing a volumetric technique, the deuterium solubility, X, in heavy water (L), low-pressure hexagonal ice (I h), and high-pressure cubic clathrate ice (sII) is studied at deuterium pressures up to 1.8 kbar and temperatures from -40 to +5 degrees C. The triple point of the L + I(h) + sII equilibrium is located at P = 1.
View Article and Find Full Text PDFThe high-pressure treatment of C60 in an H2 atmosphere at high temperatures leads to the efficient formation of a covalently bound dimer and some oligomeric species. The resulting hydrogenated C120 is an example of the bulk production of covalently bound derivatized fullerene cores. Matrix-assisted laser desorption/ionization in conjunction with reflectron time-of-flight mass spectrometry has been applied to the product analysis.
View Article and Find Full Text PDF