Unlabelled: We compiled an experimental database for the surface tension of binary mixtures containing a wide variety of fluids, from the chemical classes (water, alcohols, amines, ketones, linear and branched alkanes, naphthenes, aromatics, refrigerants, and cryogens). The resulting data set includes 65 pure fluids and 154 binary pairs with a total of 8205 points. We used this database to test the performance of a parachor model for the surface tension of binary mixtures.
View Article and Find Full Text PDFFluid Phase Equilib
January 2023
The state of scientific publications, problems, possible solutions, and underutilized opportunities are discussed on the basis of author's experience as a reader, author, reviewer, and editor. The author feels that significant improvement can be made, which will increase the efficiency of communication and quality of information. The focused area is thermophysical properties related to chemical engineering, but the concerns and conclusions can be applied to a wider scope.
View Article and Find Full Text PDFThe ThermoML Archive is a subset of Thermodynamics Research Center (TRC) data holdings corresponding to cooperation between NIST TRC and five journals: Journal of Chemical Engineering and Data (ISSN: 1520-5134), The Journal of Chemical Thermodynamics (ISSN: 1096-3626), Fluid Phase Equilibria (ISSN: 0378-3812), Thermochimica Acta (ISSN: 0040-6031), and International Journal of Thermophysics (ISSN: 1572-9567). Data from initial cooperation (around 2003) through the 2019 calendar year are included. The archive has undergone a major update with the goal of improving the FAIRness and user experience of the data provided by the service.
View Article and Find Full Text PDFScientific projects frequently involve measurements of thermophysical, thermochemical, and other related properties of chemical compounds and materials. These measured property data have significant potential value for the scientific community, but incomplete and inaccurate reporting often hampers their utilization. The present IUPAC Technical Report summarizes the needs of chemical engineers and researchers as consumers of these data and shows how publishing practices can improve information transfer.
View Article and Find Full Text PDFThis article is the first of three projected IUPAC Technical Reports resulting from IUPAC Project 2011-037-2-100 (Reference Materials for Phase Equilibrium Studies). The goal of that project was to select reference systems with critically evaluated property values for the validation of instruments and techniques used in phase equilibrium studies for mixtures. This Report proposes seven systems for liquid-liquid equilibrium studies, covering the four most common categories of binary mixtures: aqueous systems of moderate solubility, non-aqueous systems, systems with low solubility, and systems with ionic liquids.
View Article and Find Full Text PDFBubble point measurements have been taken on three compositions of the neopentane + ethane system. The results are modeled with a Peng-Robinson equation with symmetrical mixing rule and a Helmholtz-energy-based 4-parameter model. Interaction parameters for all fits are provided.
View Article and Find Full Text PDFHigh quality thermophysical property data are essential to many scientific and engineering applications. These data are produced at a high rate and are affected by a range of experimental and reporting error sources that often exceed stated uncertainties. As a result, critical evaluation is required to establish the limits of reliability in a quantified way.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present article describes the background and implementation for new additions in latest release of TDE. Advances are in the areas of program architecture and quality improvement for automatic property evaluations, particularly for pure compounds.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for material streams involving any number of chemical components with assessment of uncertainties. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity-coefficient models for phase equilibrium properties (vapor-liquid equilibrium).
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for ternary chemical systems. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity coefficient models for phase equilibrium properties (vapor-liquid and liquid-liquid equilibrium).
View Article and Find Full Text PDFThe heat capacity and parameters of the solid-to-solid phase transition of adamantane were measured in the temperature range from 80 to 370 K by use of adiabatic calorimetry. The thermodynamic functions for the compound in the crystalline and liquid states were calculated. The standard molar enthalpy of formation in the crystalline state for adamantane was obtained from combustion calorimetry by use of two different calorimeters.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe the development of a World Wide Web-based interface to TDE evaluations of pure compound properties, including critical properties, phase boundary equilibria (vapor pressures, sublimation pressures, and crystal-liquid boundary pressures), densities, energetic properties, and transport properties. This includes development of a system for caching evaluation results to maintain high availability and an advanced window-in-window interface that leverages modern Web-browser technologies.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. This paper describes the first application of this concept to the evaluation of thermodynamic properties for chemical reactions. Reaction properties evaluated are the enthalpies, entropies, Gibbs energies, and thermodynamic equilibrium constants.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for binary chemical systems. Five activity-coefficient models have been implemented for representation of phase-equilibrium data (vapor-liquid, liquid-liquid, and solid-liquid equilibrium): NRTL, UNIQUAC, Van Laar, Margules/Redlich-Kister, and Wilson.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
April 2016
It has long been understood that availability of thermophysical and thermochemical property data is vital to scientific research and industrial design. For over 65 years, the Thermodynamics Research Center (TRC) has been publishing tables of critically evaluated data covering physical and thermodynamic properties of pure compounds, TRC Tables-Hydrocarbons and TRC Tables-Non-Hydrocarbons. Over their long history, the TRC Tables have always been valued as a reputable source of evaluated thermophysical and thermodynamic data.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. The present paper describes two major software enhancements to TDE: (1) generation of equation of state (EOS) representations on demand and (2) establishment of a dynamically updated experimental data resource for use in the critical evaluation process. Four EOS formulations have been implemented in TDE for on-demand evaluation: the volume translated Peng-Robinson, modified Sanchez-Lacombe, PC-SAFT, and Span Wagner EOS.
View Article and Find Full Text PDFThe first full-scale software implementation of the dynamic data evaluation concept {ThermoData Engine (TDE)} is described for thermophysical property data. This concept requires the development of large electronic databases capable of storing essentially all experimental data known to date with detailed descriptions of relevant metadata and uncertainties. The combination of these electronic databases with expert-system software, designed to automatically generate recommended data based on available experimental data, leads to the ability to produce critically evaluated data dynamically or 'to order'.
View Article and Find Full Text PDFGuided data capture software (GDC) is described for mass-scale abstraction from the literature of experimental thermophysical and thermochemical property data for organic chemical systems involving one, two, and three components, chemical reactions, and chemical equilibria. Property values are captured with a strictly hierarchical system based upon rigorous application of the thermodynamic constraints of the Gibbs phase rule with full traceability to source documents. Key features of the program and its adherence to scientific principles are described with particular emphasis on data-quality issues, both in terms of data accuracy and database integrity.
View Article and Find Full Text PDFTo a significant degree processes of database development are based upon human activities, which are susceptible to various errors. Propagation of errors in the processing leads to a decrease in the value of original data as well as that of any database products. Data quality is a critical issue that every database producer must handle as an inseparable part of the database management.
View Article and Find Full Text PDF