Publications by authors named "Vladimir D Kulakovskii"

Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs.

View Article and Find Full Text PDF

We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized.

View Article and Find Full Text PDF

Conventional semiconductor laser emission relies on stimulated emission of photons, which sets stringent requirements on the minimum amount of energy necessary for its operation. In comparison, exciton-polaritons in strongly coupled quantum well microcavities can undergo stimulated scattering that promises more energy-efficient generation of coherent light by 'polariton lasers'. Polariton laser operation has been demonstrated in optically pumped semiconductor microcavities at temperatures up to room temperature, and such lasers can outperform their weak-coupling counterparts in that they have a lower threshold density.

View Article and Find Full Text PDF