Publications by authors named "Vladimir Berzhansky"

We demonstrate optical nonthermal excitation of exchange dominated spin waves of different orders in a magnetophotonic crystal. The magnetophotonic structure consists of a thin magnetic film and a Bragg stack of nonmagnetic layers to provide a proper nonuniform interference pattern of the inverse Faraday effect induced by light in the magnetic layer. We found a phenomenon of the pronounced phase slippage of the inverse Faraday effect distribution when the pump wavelength is within the photonic band gap of the structure.

View Article and Find Full Text PDF

We demonstrate a novel all-dielectric magnetophotonic structure that consists of two-dimensional arrays of bismuth substituted iron-garnet nanocylinders supporting both localized (Fabry-Perot-like) and lattice (guided-like) optical modes. Simultaneous excitation of the two kinds of modes provides a significant enhancement of the Faraday effect by 3 times and transverse magneto-optical Kerr effect by an order of magnitude compared to the smooth magnetic film of the same effective thickness. Both magneto-optical effects are boosted in wide spectral and angular ranges making the nanocylinder array magnetic dielectric structures promising for applications with short and tightly focused laser pulses.

View Article and Find Full Text PDF

We propose a novel, to the best of our knowledge, technique for magnetoplasmonic nanostructures fabrication based on the pulse force nanolithography method. It allows one to create the high-quality magnetoplasmonic nanostructures that have lower total losses than the gratings made by the electron-beam lithography. The method provides control of the surface plasmon polaritons excitation efficiency by varying the grating parameters such as the scratching depth or the number of scratches in a single period.

View Article and Find Full Text PDF

Here we demonstrate a novel magnetoplasmonic heterostructure for efficient control of light. It consists of gold nanoparticles embedded in a thin magnetic film covered with a gold layer pierced with periodic nanoslit array. Unique feature of the proposed structure is that it supports four different types of optical modes in the same frequency range including localized and propagating surface plasmons along with waveguide modes.

View Article and Find Full Text PDF

Optical impact on the spin system in a magnetically ordered medium provides a unique possibility for local manipulation of magnetization at subpicosecond time scales. One of the mechanisms of the optical manipulation is related to the inverse Faraday effect (IFE). Usually the IFE is observed in crystals and magnetic films on a substrate.

View Article and Find Full Text PDF

This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period.

View Article and Find Full Text PDF

Magnetic circular dichroism in the spectral region from 270 to 850 nm and Faraday rotation at the wavelength of 655 nm in ultrathin (1.5-92.8 nm) films prepared by reactive ion beam sputtering of target of nominal composition Bi2.

View Article and Find Full Text PDF