A FT-IR spectroscopic study of methane, ethane, and propane adsorption on magnesium and calcium forms of zeolite Y reveals different vibrational properties of the adsorbed molecules depending on the exchanged cation. This is attributed to different adsorption conformations of the hydrocarbons. Two-fold eta(2) coordination of light alkanes is realized for MgY, whereas in case of CaY zeolite quite different adsorption modes are found, involving more C-H bonds in the interaction with the cation.
View Article and Find Full Text PDFPolarization of ethane and propane resulting from adsorption of these hydrocarbons by protons and different cations in mordenite, ZSM-5, and Y zeolites was studied by diffuse reflection Fourier transform IR spectroscopy (DRIFTS). Perturbation of adsorbed molecules by protons and sodium cations is weak, while positions of absorption bands for both these zeolites are very close to each other. In contrast, distributions of C-H IR stretching bands in intensities are somewhat different.
View Article and Find Full Text PDF