The development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the particles. Here, we investigate the synthesis of submicron calcium carbonate using a microfluidic chip with a T-shaped oil supply for droplet-based synthesis to facilitate control over the formation of submicron calcium carbonate particles.
View Article and Find Full Text PDFWe report the growth of Ge-doped homoepitaxial diamond films by microwave plasma CVD in GeH-CH-H gas mixtures at moderate pressures (70-100 Torr). Optical emission spectroscopy was used to monitor Ge, H, and C species in the plasma at different process parameters, and trends for intensities of those radicals, gas temperature, and excitation temperature, with variations of GeH or CH precursor concentrations, were investigated. The film deposited on (111)-oriented single crystal diamond substrates in a high growth rate regime revealed a strong emission of a germanium-vacancy (GeV) color center with a zero-phonon line at ≈604 nm wavelength in photoluminescence (PL) spectra, confirming the successful doping.
View Article and Find Full Text PDFPoly(diphenylene phthalide) (PDP) belongs to the class of carbocyclic organic electroactive polymers, which exhibits electric conductive properties when an external electric field and/or mechanical stress is applied. In this work, the transport properties of thin-film layered lead-PDP-lead structures were experimentally studied in a wide temperature range. At sufficiently high temperatures, the current voltage characteristics are satisfactorily described in terms of the injection model of currents limited by the space charge.
View Article and Find Full Text PDFAn experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)-camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the eutectic phase diagrams of two low-molar-mass crystalline substances.
View Article and Find Full Text PDFLiquid crystals self-assemble on nanopatterned alignment layers into purely soft matter metasurfaces sensitive to external stimuli and imparting tailored spatial modulations to transmitted light wavefronts. Upon fine optimization, they are capable of efficient light deflection by virtue of anomalous refraction into a dominating transmission diffraction order. To expand the spectral range and acquire additional functionality, we put forward the double-sided metasurface design based on the liquid crystal alignment by a pair of complementing patterned substrates.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2022
Neodymium iron borate NdFe(BO) is an intensively studied multiferroic with high electric polarization values controlled by a magnetic field. It is characterized by a large quadratic magnetoelectric effect, rigidity in the base plane and a rather strong piezoelectric effect. In this work, the atomic structure of (NdBi)Fe(BO) was studied by single-crystal X-ray diffraction in the temperature range 20-500 K (space group R32, Z = 3).
View Article and Find Full Text PDFNanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance.
View Article and Find Full Text PDFMorphological transition between hexagonal and lamellar patterns in thin polystyrene--poly(4-vinyl pyridine) films simultaneously exposed to a strong in-plane electric field and saturated solvent vapor is studied with atomic force and scanning electron microscopy. In these conditions, standing cylinders made of 4-vinyl pyridine blocks arrange into threads up to tens of microns long along the field direction and then partially merge into standing lamellas. In the course of rearrangement, the copolymer remains strongly segregated, with the minor component domains keeping connectivity between the film surfaces.
View Article and Find Full Text PDFWe report the formation of high optical power microlenses in the near-surface region of the liquid crystal layer. Such microlenses, possessing a very small focal length at a rather large aperture A (/∼2), are able to focus the light into spots of a characteristic size comparable with the wavelength. Using numerical modeling, a specific patterning profile of a liquid crystal (LC) alignment surface by an ion beam is proposed to provide the aligning properties necessary for the formation of an array of microlenses with a focal length comparable to the LC cell thickness.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
December 2020
High-quality FeGaBO single crystals (0.0 ≤ x ≤ 1.0) in the form of basal plates were synthesized by the flux technique.
View Article and Find Full Text PDFSelf-assembling of liquid-crystal metasurfaces on polymer layers patterned by a focused ion beam manifests itself in distinctly colored optical transmission, as light from certain spectral bands is efficiently diffracted by the periodic liquid crystal modulations. We explore the metasurface electro-optics by applying voltage across the liquid crystal to straighten its director distribution and reroute the diffracted light into the direct transmission. We show that the characteristic times of switching from the diffracting to the transmitting state can be decreased down to a millisecond by increasing the driving voltage up to 6-8 V, while the main part of the relaxation back into the periodically deformed diffracting state occurs within about a few milliseconds, i.
View Article and Find Full Text PDFAn experimental phase diagram of the isotactic polypropylene-camphor system is constructed using an original optical method. It considerably deviates from the dynamic diagram, which can be obtained using conventional differential scanning calorimetry (DSC), and contains an additional boundary line that describes camphor solubility in the polymer. An accurate phase diagram makes it possible to perform a detailed and consistent thermodynamic analysis of the DSC, optical, and scanning electron microscopy data on the cooling of prehomogenized mixtures of different compositions, which leads to the formation of capillary-porous bodies via thermally induced phase separation.
View Article and Find Full Text PDFThe alignment of liquid crystals by surfaces is crucial for applications. It determines the director configuration in the bulk, its stability against defects and electro-optical switching scenarios. The conventional planar alignment of rubbed polymer layers can be locally flipped to vertical by irradiation with a focused ion beam on a scale of tens of nanometers.
View Article and Find Full Text PDFFormation of photonic liquid crystal metasurfaces on rubbed polyimide substrates patterned by focused ion beam is demonstrated. Modulation of the surface anchoring conditions with periods from 1 to 6 micrometers gives rise to periodic deformation of the nematic liquid crystal director field. The exact periodicity is confirmed by the light diffraction measurements.
View Article and Find Full Text PDFHigh refractive index makes silicon the optimal platform for dielectric metasurfaces capable of versatile control of light. Among various silicon modifications, its monocrystalline form has the weakest visible light absorption but requires a careful choice of the fabrication technique to avoid damage, contamination or amorphization. Presently prevailing chemical etching can shape thin silicon layers into two-dimensional patterns consisting of strips and posts with vertical walls and equal height.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
April 2018
Beilstein J Nanotechnol
January 2018
We have studied the alignment of a nematic liquid crystal (LC) material on aluminum subwavelength nanogratings as a function of the period, , and the slit width to period ratio, . A method, based on Fourier analysis of the transmittance spectra of the LC grating system, has been applied. We show that the gratings provide stable planar alignment only for shorter periods and narrower slits ( < 400 nm, / < 2/3).
View Article and Find Full Text PDFChiral metamaterials - artificial subwavelength structures with broken mirror symmetry - demonstrate outstanding degree of optical chirality that exhibits sophisticated spectral behavior and can eventually reach extreme values. Based on the fundamental causality principle we show how one can unambiguously relate the metamaterial circular dichroism and optical activity by the generalized Kramers-Kronig relations. Contrary to the conventional relations, the generalized ones provide a unique opportunity of extracting information on material-dependent zeroes of transmission coefficient in the upper half plane of complex frequency.
View Article and Find Full Text PDFStudies of DNA condensation have opened new perspectives in biotechnology and medicine. DNA condensation induced by polyamines or trivalent metal ions in vitro at room temperature has been investigated in detail. Our recent studies have demonstrated Mg(2+)-mediated formation of DNA condensates during the PCR.
View Article and Find Full Text PDF