This letter describes a simple modification of the Oja learning rule, which asymptotically constrains the L1-norm of an input weight vector instead of the L2-norm as in the original rule. This constraining is local as opposed to commonly used instant normalizations, which require the knowledge of all input weights of a neuron to update each one of them individually. The proposed rule converges to a weight vector that is sparser (has more zero weights) than the vector learned by the original Oja rule with or without the zero bound, which could explain the developmental synaptic pruning.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
We present a circuit architecture for compact analog VLSI implementation of the Izhikevich neuron model, which efficiently describes a wide variety of neuron spiking and bursting dynamics using two state variables and four adjustable parameters. Log-domain circuit design utilizing MOS transistors in subthreshold results in high energy efficiency, with less than 1pJ of energy consumed per spike. We also discuss the effects of parameter variations on the dynamics of the equations, and present simulation results that replicate several types of neural dynamics.
View Article and Find Full Text PDF