Publications by authors named "Vladimir A Zolottsev"

Steroid derivatives modified with nitrogen containing heterocycles are known to inhibit activity of steroidogenic enzymes, decrease proliferation of cancer cells and attract attention as promising anticancer agents. Specifically, 2'-(3β-hydroxyandrosta-5,16-dien-17-yl)-4',5'-dihydro-1',3'-oxazole 1a potently inhibited proliferation of prostate carcinoma cells. In this study we synthesized and investigated five new derivatives of 3β-hydroxyandrosta-5,16-diene comprising 4'-methyl or 4'-phenyl substituted oxazolinyl cycle 1 (b-f).

View Article and Find Full Text PDF

Photodynamic therapy is a minimally invasive treatment of tumors using photosensitizers, light, and reactive oxygen species, which can destroy cellular structures. With the development of photodynamic therapy, significant efforts have been made to create new efficient photosensitizers with improved delivery to cells, stability, and selectivity against cancer tissues. Naturally occurring tetrapyrrolic macrocycles, such as porphyrins and chlorins, are very attractive as photosensitizers, and their structural modification and conjugation with other biologically active molecules are promising approaches for creating new photosensitizers specifically targeting cancer cells.

View Article and Find Full Text PDF

The aim of this study was to explore the mechanisms of action of alsevirone in prostate cancer (PC) in vitro and in vivo: CYP17A1 inhibition, cytotoxic, apoptotic, and antitumor effects in comparison with abiraterone. The CYP17A1-inhibitory activity was investigated in rat testicular microsomes using high-performance liquid chromatography. Testosterone levels were evaluated using enzyme-linked immunoassay.

View Article and Find Full Text PDF

This mini-review focuses on the investigation of novel nitrogen-containing steroid derivatives that are potentially applicable for prostate cancer treatment. It covers the literature of the last decade, highlighting the structure of new steroid compounds that exhibit significant activity in prostate cancer cells and possess pharmacological potency. New derivatives of known anti-prostate cancer agents: abiraterone and galeterone, new derivatives of androstane and pregnane modified with nitrogen-containing heterocycles, and some related steroid-derived compounds are discussed in the review.

View Article and Find Full Text PDF

Seven new oxazoline, benzoxazole and benzimidazole derivatives were synthesized from 3β-acetoxyandrosta-5,16-dien-17-carboxylic, 3β-acetoxyandrost-5-en-17β-carboxylic and 3β-acetoxypregn-5-en-21-oic acids. Docking to active site of human 17α-hydroxylase/17,20-lyase revealed that all oxazolines, as well as benzoxazoles and benzimidazoles comprising Δ could form stable complexes with enzyme, in which steroid moiety is positioned similarly to that of abiraterone and galeterone, and nitrogen atom coordinates heme iron, while 16,17-saturated benzoxazoles and benzimidazoles could only bind in a position where heterocycle is located nearly parallel to heme plane. Modeling of the interaction of new benzoxazole and benzimidazole derivatives with androgen receptor revealed the destabilization of helix 12, constituting activation function 2 (AF2) site, by mentioned compounds, similar to one induced by known antagonist galeterone.

View Article and Find Full Text PDF

Conjugates of 17α-substituted testosterone (1 and 2) and 17β-substituted epitestosterone (3 and 4) with pyropheophorbide a were synthesized. The scheme consisted of synthesis of 17α-hydroxy-3-oxopregn-4-en-21-oic and 17β-hydroxy-3-oxopregn-4-en-21-oic acids, and their coupling with pyropheophorbide a by means of either ethylene diamine, or 1,5-diamino pentane linkers. Mutual influence of steroidal and macrocyclic fragments in conjugates molecules was dependent on configuration of C17 and length of linker, that was established by analysis of H NMR spectra and molecular models of conjugates.

View Article and Find Full Text PDF

Four new 4,5-dihydro-1,3-oxazole, and four new benzo-[d]-oxazole derivatives of [17(20)E]-21-norpregnene, differing in the structure of steroid moiety, were synthesized and evaluated for their potency to inhibit 17α-hydroxylase/17,20-lyase (CYP17A1) activity. Among new compounds, the only oxazolinyl derivative comprising 5-oxo-4,5-seco-3-yn- moiety potently inhibited CYP17A1. Binding modes of the oxazolinyl derivatives of [17(20)E]-21-norpregnene were analyzed by molecular dynamics simulations, and model of alternate, water-bridged type II interaction was proposed for these compounds.

View Article and Find Full Text PDF

Five 4,5-dihydro-1,3-oxazole derivatives of [17(20)E]-21-norpregnene, comprising 3β-hydroxy-5-ene (1), 3,6-dioxo-4-ene (2), 3-oxo-4-ene (3), 3α,5α-cyclo-6-oxo (4), 3β-hydroxy-6-oxo (5) fragments were synthesized. Synthesis was conducted with improved procedure, based on reaction of suitably protected [17(20)E]-pregnen-21-oic acids with ethanolamine in presence of triphenyl phosphine, carbon tetrachloride, and triethyl amine. Potency of the compounds 1-5 to inhibit 17α-hydroxylase/17,20-lyase (CYP17A1) activity was studied by highly sensitive electrochemical method, using the enzyme immobilization technique.

View Article and Find Full Text PDF