Monolayers of molybdenum disulfide MoS2 are considered to be prospective materials for nanoelectronics and various catalytic processes. Since in certain conditions they undergo 1T ↔ 2H phase transitions, studying these phase changes is an urgent task. We present a DFT research of these transitions to show that they can proceed as a solid-state reaction.
View Article and Find Full Text PDFMonolayered titanium disulfide TiS2, a prospective nanoelectronic material, was previously shown to be subject to an exothermic solid-state D3h -D3d reaction that proceeds via a newly discovered transition state. Here, we study the reaction in detail using topological methods of quantum chemistry (quantum theory of atoms in molecules and electron localization function analysis) and show how electron density and chemical bonding between the atoms change in the course of the reaction. The reaction is shown to undergo a series of topological catastrophes, associated with elementary chemical events such as break and formation of bonds (including the unexpected formation of S-S bonding between sulfur layers), and rearrangement of electron density of outer valence and core shells.
View Article and Find Full Text PDF