The mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp.
View Article and Find Full Text PDFThe defining feature of the mycobacterial outer membrane (OM) is the presence of mycolic acids (MAs), which, in part, render the bilayer extremely hydrophobic and impermeable to external insults, including many antibiotics. Although the biosynthetic pathway of MAs is well studied, the mechanism(s) by which these lipids are transported across the cell envelope is(are) much less known. Mycobacterial membrane protein Large 3 (MmpL3), an essential inner membrane (IM) protein, is implicated in MA transport, but its exact function has not been elucidated.
View Article and Find Full Text PDFA periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. The mechanism of chaperone-mediated P-ring formation is poorly understood. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions.
View Article and Find Full Text PDFArchaeal flagella are unique structures that share functional similarity with bacterial flagella, but are structurally related to bacterial type IV pili. The flagellar accessory protein FlaH is one of the conserved components of the archaeal motility system. However, its function is not clearly understood.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
November 2014
The flagellar accessory protein FlaH is thought to be one of the essential components of an archaeal motility system. However, to date biochemical and structural information about this protein has been limited. Here, the crystallization of FlaH from the hyperthermophilic archaeon Methanocaldococcus jannaschii is reported.
View Article and Find Full Text PDFThe membrane protein FlhB is a highly conserved component of the flagellar secretion system, and it plays an active role in the regulation of protein export. In this study conserved properties of FlhB that are important for its function were investigated. Replacing the flhB gene (or part of the gene) in Salmonella typhimurium with the flhB gene of the distantly related bacterium Aquifex aeolicus greatly reduces motility.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
May 2013
The membrane protein FlhB is a highly conserved component of the flagellar secretion system. It is composed of an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhBC). Here, the crystal structures of FlhBC from Salmonella typhimurium and Aquifex aeolicus are described at 2.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
September 2011
Tropomyosin (TM) is an elongated two-chain protein that binds along actin filaments. Important binding sites are localized in the N-terminus of tropomyosin. The structure of the N-terminus of the long muscle α-TM has been solved by both NMR and X-ray crystallography.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2011
FlhB is a key protein in the regulation of protein export by the bacterial flagellar secretion system. It is composed of two domains: an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhBc). FlhBc from Salmonella typhimurium has been successfully crystallized using the vapour-diffusion method.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
February 2011
FlhB is a key protein in the regulation of protein export by the bacterial flagellar secretion system. It is composed of two domains: an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhBc). Here, the crystallization and preliminary crystallographic analysis of FlhBc from Aquifex aeolicus are reported.
View Article and Find Full Text PDF