Background: Bats are a major source of new and emerging viral diseases. Despite the fact that bats carry and shed highly pathogenic viruses including Ebola, Nipah and SARS, they rarely display clinical symptoms of infection. Host factors influencing viral replication are poorly understood in bats and are likely to include both pre- and post-transcriptional regulatory mechanisms.
View Article and Find Full Text PDFThe secretion of certain proteins in Porphyromonas gingivalis is dependent on a C-terminal domain (CTD). After secretion, the CTD is cleaved prior to extensive modification of the mature protein, probably with lipopolysaccharide, therefore enabling attachment to the cell surface. In this study, bioinformatic analyses of the CTD demonstrated the presence of three conserved sequence motifs.
View Article and Find Full Text PDFAutotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion.
View Article and Find Full Text PDFBackground: Gas chromatography-mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines.
View Article and Find Full Text PDFThe complexity of the metabolic networks in even the simplest organisms has raised new challenges in organizing metabolic information. To address this, specialized computer frameworks have been developed to capture, manage, and visualize metabolic knowledge. The leading databases of metabolic information are those organized under the umbrella of the BioCyc project, which consists of the reference database MetaCyc, and a number of pathway/genome databases (PGDBs) each focussed on a specific organism.
View Article and Find Full Text PDFThe apicomplexan parasite Cryptosporidium parvum possesses a mitosome, a relict mitochondrion with a greatly reduced metabolic capability. This mitosome houses a mitochondrial-type protein import apparatus, but elements of the protein import pathway have been reduced, and even lost, through evolution. The small Tim protein family is a case in point.
View Article and Find Full Text PDFLeishmania parasites proliferate within nutritionally complex niches in their sandfly vector and mammalian hosts. However, the extent to which these parasites utilize different carbon sources remains poorly defined. In this study, we have followed the incorporation of various (13)C-labeled carbon sources into the intracellular and secreted metabolites of Leishmania mexicana promastigotes using gas chromatography-mass spectrometry and (13)C NMR.
View Article and Find Full Text PDFBiochemical systems biology augments more traditional disciplines, such as genomics, biochemistry and molecular biology, by championing (i) mathematical and computational modeling; (ii) the application of traditional engineering practices in the analysis of biochemical systems; and in the past decade increasingly (iii) the use of near-comprehensive data sets derived from 'omics platform technologies, in particular "downstream" technologies relative to genome sequencing, including transcriptomics, proteomics and metabolomics. The future progress in understanding biological principles will increasingly depend on the development of temporal and spatial analytical techniques that will provide high-resolution data for systems analyses. To date, particularly successful were strategies involving (a) quantitative measurements of cellular components at the mRNA, protein and metabolite levels, as well as in vivo metabolic reaction rates, (b) development of mathematical models that integrate biochemical knowledge with the information generated by high-throughput experiments, and (c) applications to microbial organisms.
View Article and Find Full Text PDFProtein import and export pathways are driven by protein translocases, often comprised of multiple subunits, and usually conserved across a range of organisms. Protein import into mitochondria is fundamental to eukaryotic organisms and is initiated when substrate proteins are translocated across the mitochondrial outer membrane by the TOM complex. The essential subunit of this complex is a protein called Tom40, which is probably a beta-barrel in structure and serves as the translocation pore.
View Article and Find Full Text PDFSeveral essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction.
View Article and Find Full Text PDFLeishmania spp. are sandfly-transmitted protozoa parasites that cause a spectrum of diseases in humans. Many enzymes involved in Leishmania central carbon metabolism differ from their equivalents in the mammalian host and are potential drug targets.
View Article and Find Full Text PDFGas chromatography-mass spectrometry (GC-MS) is a widely used analytical technique for the identification and quantification of trace chemicals in complex mixtures. When complex samples are analyzed by GC-MS it is common to observe co-elution of two or more components, resulting in an overlap of signal peaks observed in the total ion chromatogram. In such situations manual signal analysis is often the most reliable means for the extraction of pure component signals; however, a systematic manual analysis over a number of samples is both tedious and prone to error.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2009
Molecular machines drive essential biological processes, with the component parts of these machines each contributing a partial function or structural element. Mitochondria are organelles of eukaryotic cells, and depend for their biogenesis on a set of molecular machines for protein transport. How these molecular machines evolved is a fundamental question.
View Article and Find Full Text PDFThe identification of mitosomes in Giardia generated significant debate on the evolutionary origin of these organelles, whether they were highly reduced mitochondria or the product of a unique endosymbiotic event in an amitochondrial organism. As the protein import pathway is a defining characteristic of mitochondria, we sought to discover a TOM (translocase in the outer mitochondrial membrane) complex in Giardia. A Hidden Markov model search of the Giardia genome identified a Tom40 homologous sequence (GiTom40), where Tom40 is the protein translocation channel of the TOM complex.
View Article and Find Full Text PDFBackground: Leishmania spp. are sandfly transmitted protozoan parasites that cause a spectrum of diseases in more than 12 million people worldwide. Much research is now focusing on how these parasites adapt to the distinct nutrient environments they encounter in the digestive tract of the sandfly vector and the phagolysosome compartment of mammalian macrophages.
View Article and Find Full Text PDFMicrosporidia are a group of highly adapted obligate intracellular parasites that are now recognized as close relatives of fungi. Their adaptation to parasitism has resulted in broad and severe reduction at (i) a genomic level by extensive gene loss, gene compaction, and gene shortening; (ii) a biochemical level with the loss of much basic metabolism; and (iii) a cellular level, resulting in lost or cryptic organelles. Consistent with this trend, the mitochondrion is severely reduced, lacking ATP synthesis and other typical functions and apparently containing only a fraction of the proteins of canonical mitochondria.
View Article and Find Full Text PDFFEMS Microbiol Rev
November 2008
The assembly of beta-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of beta-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating beta-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent.
View Article and Find Full Text PDFMitochondria cannot be made de novo. Mitochondrial biogenesis requires that up to 1000 proteins are imported into mitochondria, and the protein import pathway relies on hetero-oligomeric translocase complexes in both the inner and outer mitochondrial membranes. The translocase in the outer membrane, the TOM complex, is composed of a core complex formed from the beta-barrel channel Tom40 and additional subunits each with single, alpha-helical transmembrane segments.
View Article and Find Full Text PDFBackground: Gas chromatography-mass spectrometry (GC-MS) is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices.
View Article and Find Full Text PDFMitochondria were derived from intracellular bacteria and the mitochondrial intermembrane space is topologically equivalent to the bacterial periplasm. Both compartments contain ATP-independent chaperones involved in the transport of hydrophobic membrane proteins. The mitochondrial TIM (translocase of the mitochondrial inner membrane) 10 complex and the periplasmic chaperone SurA were examined in terms of evolutionary relation, structural similarity, substrate binding specificity and their function in transporting polypeptides for insertion into membranes.
View Article and Find Full Text PDFLeishmania amastigotes primarily proliferate within macrophages in the mammalian host. Genome-based metabolic reconstructions, combined with biochemical, reverse genetic and mRNA or protein profiling studies are providing new insights into the metabolism of this intracellular stage. We propose that the complex nutritional requirements of amastigotes have contributed to the tropism of these parasites for the amino acid-rich phagolysosome of macrophages.
View Article and Find Full Text PDFThe mitochondrial inner and outer membranes are composed of a variety of integral membrane proteins, assembled into the membranes posttranslationally. The small translocase of the inner mitochondrial membranes (TIMs) are a group of approximately 10 kDa proteins that function as chaperones to ferry the imported proteins across the mitochondrial intermembrane space to the outer and inner membranes. In yeast, there are 5 small TIM proteins: Tim8, Tim9, Tim10, Tim12, and Tim13, with equivalent proteins reported in humans.
View Article and Find Full Text PDFStudies of metabolism usually evoke memories of densely written wall charts of metabolic pathways of enormous complexity, such as the IUBMB-Nicholson metabolic pathways map or the Roche metabolic pathways wall chart. Advances in bioinformatics in the past decade have brought about a revolution in the way the information in metabolic pathways is viewed and managed. Today, metabolic pathways are stored in knowledge bases that can be queried, modified, copied, and extended with ease, precision, and speed.
View Article and Find Full Text PDFThe single mitochondrion of kinetoplastids divides in synchrony with the nucleus and plays a crucial role in cell division. However, despite its importance and potential as a drug target, the mechanism of mitochondrial division and segregation and the molecules involved are only partly understood. In our quest to identify novel mitochondrial proteins in Leishmania, we constructed a hidden Markov model from the targeting motifs of known mitochondrial proteins as a tool to search the Leishmania major genome.
View Article and Find Full Text PDFTransthyretin (TTR) is a tetrameric protein involved in the distribution of thyroid hormones in vertebrates. The amino acid sequence of TTR is highly conserved across vertebrates. Hypothetical TTR-like proteins (TLPs) were inferred from the identification of genes in nonvertebrate species.
View Article and Find Full Text PDF