Hematoporphyrin derivative (HPD), a sensitizer used in photodynamic therapy (PDT) of malignancies, is progressively destroyed during the treatment. Prior studies suggested that upon PDT the photobleaching of HPD in tumor tissues is largely mediated by self-sensitized singlet oxygen. However, little is known about the role of other reactive oxygen species (ROS).
View Article and Find Full Text PDFThis study was aimed to estimate the participation of reactive oxygen species (ROS), other than singlet oxygen (1O2), in the antitumor effect of photodynamic therapy (PDT) with hematoporphyrin derivative (HPD) as well as to determine the ability of photoexcited HPD to the formation of protein peroxides that currently are regarded as a new form of ROS. Studies were performed on Ehrlich ascites carcinoma (EAC) cells, which were loaded with HPD in phosphate-buffered saline and then irradiated with red light at 630 run in the same buffer. Experiments indicated that H2O2 and oxygen radicals could mediate the tumoricidal action of HPD-PDT; we found that photosensitization of EAC cells with HPD leads to the formation of significant amounts of H2O2, superoxide (O2-.
View Article and Find Full Text PDFAim: To elucidate the mechanism of the potentiating influence of heating associated with photoirradiation on the antitumor efficiency of photodynamic therapy (PDT) with hematoporphyrin derivative (HPD).
Methods: The study was carried out on Ehrlich ascites carcinoma (EAC) cells, which were loaded with HPD in a serum-free medium and then irradiated with red light (lambda max=630 nm) at various temperatures. Cytotoxicity was estimated by the trypan blue exclusion assay.