Efficient catalytic systems for various organic transformations in green solvents, especially water, are in great demand. Catalytically active bis-NHC complexes of palladium(II) based on imidazole-4,5-dicarboxylic acid with different lipophilicities were obtained. The synthesis of imidazolium salts was complicated by the formation of side products of nucleophilic substitution by iodide ions in the Menshutkin reaction involving alkyl iodides, which was successfully resolved by using alkyl tosylates.
View Article and Find Full Text PDFFor the first time, dendrimers based on thiacalix[4]arenes bearing imidazolium dendrons on one side and alkyl fragments on another side of the macrocyclic platform and symmetrical dendrimers with four dendrons on both sides were synthesized. Dendrons consist of gallic acid-based branches functionalized with imidazolium and triazolium groups. The physicochemical properties of the dendrimers such as micellar concentration (CMC), size, and solubilization capacity were measured.
View Article and Find Full Text PDFNew fluorescent systems for photocatalysis, sensors, labeling, etc., are in great demand. Amphiphilic ones are of special interest since they can form functional colloidal systems that can be used in aqueous solutions.
View Article and Find Full Text PDFThe selection of experimental conditions leading to a reasonable yield is an important and essential element for the automated development of a synthesis plan and the subsequent synthesis of the target compound. The classical QSPR approach, requiring one-to-one correspondence between chemical structure and a target property, can be used for optimal reaction conditions prediction only on a limited scale when only one condition component (e.g.
View Article and Find Full Text PDFThe report introduces hybrid polyelectrolyte-stabilized colloids combining blue and green-emitting building blocks, which are citrate carbon dots (CDs) and [TbL] chelate complexes with 1,3-diketonate derivatives of calix[4]arene. The joint incorporation of green and blue-emitting blocks into the polysodium polystyrenesulfonate (PSS) aggregates is carried out through the solvent-exchange synthetic technique. The coordinative binding between Tb centers and CD surface groups in initial DMF solutions both facilitates joint incorporation of [TbL] complexes and the CDs into the PSS-based nanobeads and affects fluorescence properties of [TbL] complexes and CDs, as well as their ability for temperature sensing.
View Article and Find Full Text PDFThe synthesis of new calix[4]arenes adopting a stereoisomeric form bearing two or four azide fragments on the upper rim and water-soluble triazolyl amphiphilic receptors with two or four polyammonium headgroups via copper-catalyzed azide-alkyne cycloaddition reaction has been performed for the first time. It was found that the synthesized macrocycles form stable aggregates with hydrodynamic diameters between 150-200 nm and electrokinetic potentials about +40 to +60 mV in water solutions. Critical aggregation concentration (CAC) values were measured using a micelle method with pyrene and eosin Y as dye probes.
View Article and Find Full Text PDFNew tetranuclear heteroleptic complexes [Er4(dbm)6(O-btd)4(OH)2] (1) and [Er4(dbm)4(O-btd)6(OH)2] (2) (O-btd = 4-hydroxo-2,1,3-benzothiadiazolate and dbm = dibenzoylmethanide) and their solvates with toluene, THF and CH2Cl2 were prepared using two synthetic approaches. The structures of the products were confirmed by single-crystal X-ray diffraction. Magnetic properties of 1 and 2 are in good agreement with X-ray data.
View Article and Find Full Text PDFThe work represents colloids of silica nanoparticles displaying fluorescent response on biorelevant compounds exemplified by phosphacoumarins and phospholipids. The luminescent properties of the colloids arise from Tb(III) complexes doped into silica nanoparticles (SNs). The noncovalent decoration of SNs by dicationic surfactant with further interfacial binding of dye anions enables to develop colloids programmed to display a substrate induced fluorescent response.
View Article and Find Full Text PDFThe quenching effect of dyes (phenol red and bromothymol blue) on Tb(III)-centered luminescence enables to sense the aggregation of cationic and anionic surfactants near the silica surface of Tb-doped silica nanoparticles (SN) in aqueous solutions. The Tb-centered luminescence of non-decorated SNs is diminished by the inner filter effect of both dyes. The decoration of the silica surface by cationic surfactants induces the quenching through the energy transfer between silica coated Tb(III) complexes and dye anions inserted into surfactant aggregates.
View Article and Find Full Text PDFThe aggregation and cloud point behavior of Tb(III)-doped silica nanoparticles has been studied in Triton X-100 (TX-100) solutions at various concentration conditions by fluorimetry, dynamic light scattering, electrophoresis and transmission electron microscopy methods. The temperature responsive behavior of nanoparticles is observed at definite concentration of TX-100, where the aggregation of TX-100 at the silica/water interface is evident from the increased size of the silica nanoparticles. The reversible dehydration of TX-100 aggregates at the silica/water interface should be assumed as the main reason of the temperature induced phase separation of silica nanoparticles.
View Article and Find Full Text PDF