Publications by authors named "Vladana Vukojevic"

Naltrexone (NTX), a homolog of the opiate antidote naloxone, is an orally active long-acting general opioid receptor antagonist used in the treatment of opiate dependence. NTX is also found to relieve craving for alcohol and is one of few FDA-approved medications for treatment of alcohol use disorder (AUD). While it was early on established that NTX acts by blocking the binding of endogenous opioid peptide ligands released by alcohol, experimental evidence emerged that could not be fully accounted for by this explanation alone, suggesting that NTX may have additional modes of action.

View Article and Find Full Text PDF

The relationships between parathyroid hormone (PTH) secretion and parathyroid cell membrane potential, including the identities and roles of K channels that regulate and/or modulate membrane potential are not well defined. Here we have used Western blot/immunohistochemistry as well as patch-clamp and perifusion techniques to identify and localize specific K channels in parathyroid cells and to investigate their roles in the control of membrane potential and PTH secretion. We also re-investigated the relationship between membrane potential and exocytosis.

View Article and Find Full Text PDF

Nucleocytoplasmic transport of transcription factors is vital for normal cellular function, and its breakdown is a major contributing factor in many diseases. The glucocorticoid receptor (GR) is an evolutionarily conserved, ligand-dependent transcription factor that regulates homeostasis and response to stress and is an important target for therapeutics in inflammation and cancer. In unstimulated cells, the GR resides in the cytoplasm bound to other molecules in a large multiprotein complex.

View Article and Find Full Text PDF

Background: Standard neuropathologic analysis of Alzheimer's brain relies on traditional fluorescence microscopy, which suffers from limited spatial resolution due to light diffraction. As a result, it fails to reveal intricate details of amyloid plaques. While electron microscopy (EM) offers higher resolution, its extensive sample preparation, involving fixation, dehydration, embedding, and sectioning, can introduce artifacts and distortions in the complex brain tissue.

View Article and Find Full Text PDF
Article Synopsis
  • * NTX works by blocking mu-opioid receptors (MOP), and although its effects on these receptors are well understood, its interaction with kappa-opioid receptors (KOP) and how it influences addiction is less clear.
  • * Research indicates that alcohol interacts with KOP in the plasma membrane, and NTX affects these interactions directly and indirectly, suggesting that its effectiveness in treating AUD may involve both MOP and KOP receptor activities.
View Article and Find Full Text PDF

Hyperosmotic stress activates in live cells numerous processes and also promotes intracellular protein/RNA aggregation and phase separation. However, the time course and the extent of these changes remain largely uncharacterized. To investigate dynamic changes in intracellular macromolecular crowding (MMC) induced by hyperosmotic stress in live cells, we used fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy (FCS) to quantify changes in the local environment by measuring the fluorescence lifetime and the diffusion of the monomeric enhanced green fluorescent protein (eGFP), respectively.

View Article and Find Full Text PDF

Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB.

View Article and Find Full Text PDF

Hemoglobin (Hb), a life-sustaining and highly abundant erythrocyte protein, is not readily fluorescent. A few studies have already reported Two-Photon Excited Fluorescence (TPEF) of Hb, however, the mechanisms through which Hb becomes fluorescent upon interaction with ultrashort laser pulses are not completely understood. Here, we characterized photophysically this interaction on Hb thin film and erythrocytes using fluorescence spectroscopy upon single-photon/two-photon absorption, and UV-VIS single-photon absorption spectroscopy.

View Article and Find Full Text PDF

Several lines of evidence suggest that a characteristic of the neuropathology of Alzheimer's disease (AD) is the aggregation of the amyloid beta peptides (Aβ), fragments of the human amyloid precursor protein (hAPP). The dominating species are the Aβ40 and Aβ42 fragments with 40 and 42 amino acids, respectively. Aβ initially forms soluble oligomers that continue to expand to protofibrils, suggestively the neurotoxic intermediates, and thereafter turn into insoluble fibrils that are markers of the disease.

View Article and Find Full Text PDF

The importance of the dynamic interplay between the opioid and the serotonin neuromodulatory systems in chronic pain is well recognized. In this study, we investigated whether these two signalling pathways can be integrated at the single-cell level via direct interactions between the mu-opioid (MOP) and the serotonin 1A (5-HT1A) receptors. Using fluorescence cross-correlation spectroscopy (FCCS), a quantitative method with single-molecule sensitivity, we characterized in live cells MOP and 5-HT1A interactions and the effects of prolonged (18 h) exposure to selected non-peptide opioids: morphine, codeine, oxycodone and fentanyl, on the extent of these interactions.

View Article and Find Full Text PDF

Background: Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound.

Methods: Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96).

View Article and Find Full Text PDF

Background: Neuroinflammation is a central component of Alzheimer's disease (AD) and correlates closely with amyloid pathology. Markers of inflammation such as cytokines, and amyloidogenic aggregates, so-called nanoplaques, are both promising biomarker candidates for AD. We have previously shown that there is a relationship between the levels of nanoplaques and cytokines in cerebrospinal fluid, but it is unknown whether this association extends to serum.

View Article and Find Full Text PDF

Biochemical data have shown aggregated G protein-coupled receptor 37 (GPR37) in the cytoplasm and Lewy bodies in Parkinson's disease (PD). Properly folded GPR37 at the plasma membrane appears to be neuroprotective. GPR37, and its homologue GPR37L1, are orphan G protein-coupled receptors and their homo- and hetero-dimers have not been established.

View Article and Find Full Text PDF

With the increasing popularity of nonalcoholic beer, the association between beer drinking and alcohol intake is lost. In the present study, we show that nonalcoholic beer can stimulate the expansion of neuron-like cell lines and neuroepithelial stem cells in culture, yielding an effect comparable to that of alcoholic beer. One ingredient in beer is hops, which is derived from the flower of hop plants.

View Article and Find Full Text PDF

Compartmentalization and integration of molecular processes through diffusion are basic mechanisms through which cells perform biological functions. To characterize these mechanisms in live cells, quantitative and ultrasensitive analytical methods with high spatial and temporal resolution are needed. Here, we present quantitative scanning-free confocal microscopy with single-molecule sensitivity, high temporal resolution (∼10 μs/frame), and fluorescence lifetime imaging capacity, developed by integrating massively parallel fluorescence correlation spectroscopy with fluorescence lifetime imaging microscopy (mpFCS/FLIM); we validate the method, use it to map in live cell location-specific variations in the concentration, diffusion, homodimerization, DNA binding, and local environment of the oligodendrocyte transcription factor 2 fused with the enhanced Green Fluorescent Protein (OLIG2-eGFP), and characterize the effects of an allosteric inhibitor of OLIG2 dimerization on these determinants of OLIG2 function.

View Article and Find Full Text PDF

Background: The aggregation of amyloid β (Aβ) is central in the pathogenesis of Alzheimer's disease (AD). Recently it has been shown that specifically, larger, Thioflavin T-binding Aβ aggregates are associated with increased neuroinflammation and cytokine release. This study was aimed to quantify fibrillary amyloid aggregates, so-called nanoplaques, and investigate their relationship with cytokines in the cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Protein oligomerization is a commonly encountered strategy by which the functional repertoire of proteins is increased. This, however, is a double-edged sword strategy because protein oligomerization is notoriously difficult to control. Living organisms have therefore developed a number of chaperones that prevent protein aggregation.

View Article and Find Full Text PDF

Accurate biomarkers of Alzheimer's disease (AD) are essential for early diagnosis and intervention. Available biomarkers are not sufficient to permit the monitoring of AD progression over time, and additional biomarkers are required. Measures of aggregated amyloid-β (Aβ) could be useful biomarkers for AD.

View Article and Find Full Text PDF

Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations.

View Article and Find Full Text PDF

Transepithelial transport of proteins is an important step in the immune response to food allergens. Mammalian meat allergy is characterized by an IgE response against the carbohydrate moiety galactosyl-α-1,3-galactose (α-Gal) present on mammalian glycoproteins and glycolipids, which causes severe allergic reactions several hours after red meat consumption. The delayed reaction may be related to the processing of α-Gal carrying proteins in the gastrointestinal tract.

View Article and Find Full Text PDF

Background: Aggregation of amyloid-β (Aβ) is an early pathological event in Alzheimer's disease (AD). Consequently, measures of pathogenic aggregated Aβ are attractive biomarkers for AD. Here, we use a recently developed Thioflavin-T-Fluorescence Correlation Spectroscopy (ThT-FCS) assay to quantify structured ThT-responsive protein aggregates, so-called nanoplaques, in the cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Background: The brain-derived neurotrophic factor (BDNF) rs6265 (Val66Met) Met allele is associated with early onset (≤ 19 years old) bipolar disorder (BD). Val66Met (G196A) creates a CpG site when the Val/G allele is present. We sought to study the methylation of the BDNF promoter and its interaction with Val66Met genotype in BD.

View Article and Find Full Text PDF

Transcription factors (TFs) are fundamental in the regulation of gene expression in the development and differentiation of cells. They may act as oncogenes and when overexpressed in tumors become plausible targets for the design of antitumor agents. Homodimerization or heterodimerization of TFs are required for DNA binding and the association interface between subunits, for the design of allosteric modulators, appears as a privileged structure for the pharmacophore-based computational strategy.

View Article and Find Full Text PDF

Functional fluorescence microscopy imaging (fFMI), a time-resolved (21 μs/frame) confocal fluorescence microscopy imaging technique without scanning, is developed for quantitative characterization of fast reaction-transport processes in solution and in live cells. The method is based on massively parallel fluorescence correlation spectroscopy (FCS). Simultaneous excitation of fluorescent molecules in multiple spots in the focal plane is achieved using a diffractive optical element (DOE).

View Article and Find Full Text PDF

Background: The bladder exstrophy-epispadias complex (BEEC) is a congenital malformation of the bladder and urethra. The underlying causes of this malformation are still largely unknown; however, aside from environment, genetics is thought to play an essential role. The recurrent 22q11.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2e3iuni8sa869c6enod7dmek1iojvml4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once