Publications by authors named "Vladan Velisavljevic"

The centrifugal pump is the workhorse of many industrial and domestic applications, such as water supply, wastewater treatment and heating. While modern pumps are reliable, their unexpected failures may jeopardise safety or lead to significant financial losses. Consequently, there is a strong demand for early fault diagnosis, detection and predictive monitoring systems.

View Article and Find Full Text PDF
Article Synopsis
  • * The research proposes using federated learning (FL) to enhance collaborative machine learning without sharing sensitive medical data, utilizing models like ResNet-50 and DenseNet on a malaria dataset of 27,560 images.
  • * Results indicate that DenseNet outperforms ResNet-50 in accuracy, achieving 75% compared to 72%, and highlights the benefits of FL in improving model performance while preserving data privacy and adhering to GDPR regulations.
View Article and Find Full Text PDF

In dynamic indoor environments and for a Visual Simultaneous Localization and Mapping (vSLAM) system to operate, moving objects should be considered because they could affect the system's visual odometer stability and its position estimation accuracy. vSLAM can use feature points or a sequence of images, as it is the only source of input that can perform localization while simultaneously creating a map of the environment. A vSLAM system based on ORB-SLAM3 and on YOLOR was proposed in this paper.

View Article and Find Full Text PDF

Recent developments in computational photography enabled variation of the optical focus of a plenoptic camera after image exposure, also known as refocusing. Existing ray models in the field simplify the camera's complexity for the purpose of image and depth map enhancement, but fail to satisfyingly predict the distance to which a photograph is refocused. By treating a pair of light rays as a system of linear functions, it will be shown in this paper that its solution yields an intersection indicating the distance to a refocused object plane.

View Article and Find Full Text PDF

The Standard Plenoptic Camera (SPC) is an innovation in photography, allowing for acquiring two-dimensional images focused at different depths, from a single exposure. Contrary to conventional cameras, the SPC consists of a micro lens array and a main lens projecting virtual lenses into object space. For the first time, the present research provides an approach to estimate the distance and depth of refocused images extracted from captures obtained by an SPC.

View Article and Find Full Text PDF

We derive an optimization framework for joint view and rate scalable coding of multi-view video content represented in the texture plus depth format. The optimization enables the sender to select the subset of coded views and their encoding rates such that the aggregate distortion over a continuum of synthesized views is minimized. We construct the view and rate embedded bitstream such that it delivers optimal performance simultaneously over a discrete set of transmission rates.

View Article and Find Full Text PDF

In this paper, we present a novel wavelet-based compression algorithm for multiview images. This method uses a layer-based representation, where the 3-D scene is approximated by a set of depth planes with their associated constant disparities. The layers are extracted from a collection of images captured at multiple viewpoints and transformed using the 3-D discrete wavelet transform (DWT).

View Article and Find Full Text PDF

The encoding of both texture and depth maps of multiview images, captured by a set of spatially correlated cameras, is important for any 3-D visual communication system based on depth-image-based rendering (DIBR). In this paper, we address the problem of efficient bit allocation among texture and depth maps of multiview images. More specifically, suppose we are given a coding tool to encode texture and depth maps at the encoder and a view-synthesis tool to construct intermediate views at the decoder using neighboring encoded texture and depth maps.

View Article and Find Full Text PDF

The standard separable 2-D wavelet transform (WT) has recently achieved a great success in image processing because it provides a sparse representation of smooth images. However, it fails to efficiently capture 1-D discontinuities, like edges or contours. These features, being elongated and characterized by geometrical regularity along different directions, intersect and generate many large magnitude wavelet coefficients.

View Article and Find Full Text PDF

In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required.

View Article and Find Full Text PDF