To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.
View Article and Find Full Text PDFSensory synapses are characterized by electron-dense presynaptic specializations, so-called synaptic ribbons. In cochlear inner hair cells (IHCs), ribbons play an essential role as core active zone (AZ) organizers, where they tether synaptic vesicles, cluster calcium channels and facilitate the temporally-precise release of primed vesicles. While a multitude of studies aimed to elucidate the molecular composition and function of IHC ribbon synapses, the developmental formation of these signalling complexes remains largely elusive to date.
View Article and Find Full Text PDFBackground: The epidemiological status concerning many canine tick-borne diseases (TBDs) in Serbia is still insufficiently known.
Objectives: Our study aimed to investigate the presence of tick-borne pathogens of the family Anaplasmataceae and Hepatozoon spp., as a cause of illnesses accompanied by clinical signs that can occur in dogs with anaplasmosis, ehrlichiosis and hepatozoonosis.
AAV-mediated optogenetic neural stimulation has become a clinical approach for restoring function in sensory disorders and feasibility for hearing restoration has been indicated in rodents. Nonetheless, long-term stability and safety of AAV-mediated channelrhodopsin (ChR) expression in spiral ganglion neurons (SGNs) remained to be addressed. Here, we used longitudinal studies on mice subjected to early postnatal administration of AAV2/6 carrying fast gating ChR f-Chrimson under the control of the human synapsin promoter unilaterally to the cochlea.
View Article and Find Full Text PDFOptogenetic stimulation of spiral ganglion neurons (SGNs) in the ear provides a future alternative to electrical stimulation used in current cochlear implants. Here, we employed fast and very fast variants of the red-light-activated channelrhodopsin (ChR) Chrimson (f-Chrimson and vf-Chrimson) to study their utility for optogenetic stimulation of SGNs in mice. The light requirements were higher for vf-Chrimson than for f-Chrimson, even when optimizing membrane expression of vf-Chrimson by adding potassium channel trafficking sequences.
View Article and Find Full Text PDFOptogenetic stimulation of type I spiral ganglion neurons (SGNs) promises an alternative to the electrical stimulation by current cochlear implants (CIs) for improved hearing restoration by future optical CIs (oCIs). Most of the efforts in using optogenetic stimulation in the cochlea so far used early postnatal injection of viral vectors carrying blue-light activated channelrhodopsins (ChRs) into the cochlea of mice. However, preparing clinical translation of the oCI requires () reliable and safe transduction of mature SGNs of further species and () use of long-wavelength light to avoid phototoxicity.
View Article and Find Full Text PDFHearing impairment is the most common sensory disorder in humans. So far, rehabilitation of profoundly deaf subjects relies on direct stimulation of the auditory nerve through cochlear implants. However, in some forms of genetic hearing impairment, the organ of Corti is structurally intact and therapeutic replacement of the mutated gene could potentially restore near natural hearing.
View Article and Find Full Text PDFPhytoplankton is the base of the marine food chain as well as oxygen and carbon cycles and thus plays a global role in climate and ecology. Nucleocytoplasmic Large DNA Viruses that infect phytoplankton organisms and regulate the phytoplankton dynamics encompass genes of rhodopsins of two distinct families. Here, we present a functional and structural characterization of two proteins of viral rhodopsin group 1, OLPVR1 and VirChR1.
View Article and Find Full Text PDFIn the last 15 years, optogenetics has revolutionized the life sciences and enabled studies of complex biological systems such as the brain. Applying optogenetics also has great potential for restorative medicine, such as hearing restoration, by stimulating genetically modified spiral ganglion neurons of the cochlea with light. To this end, opsins with short closing kinetics are required, given the high firing rates and utmost temporal precision of spiking in these neurons.
View Article and Find Full Text PDFWhen hearing fails, electrical cochlear implants (eCIs) provide the brain with auditory information. One important bottleneck of CIs is the poor spectral selectivity that results from the wide current spread from each of the electrode contacts. Optical CIs (oCIs) promise to make better use of the tonotopic order of spiral ganglion neurons (SGNs) inside the cochlea by spatially confined stimulation.
View Article and Find Full Text PDFElectrical cochlear implants (eCIs) partially restore hearing and enable speech comprehension to more than half a million users, thereby re-connecting deaf patients to the auditory scene surrounding them. Yet, eCIs suffer from limited spectral selectivity, resulting from current spread around each electrode contact and causing poor speech recognition in the presence of background noise. Optogenetic stimulation of the auditory nerve might overcome this limitation as light can be conveniently confined in space.
View Article and Find Full Text PDFCochlear implants (CIs) electrically stimulate spiral ganglion neurons (SGNs) and partially restore hearing to half a million CI users. However, wide current spread from intracochlear electrodes limits spatial selectivity (i.e.
View Article and Find Full Text PDFOptogenetic tools, providing non-invasive control over selected cells, have the potential to revolutionize sensory prostheses for humans. Optogenetic stimulation of spiral ganglion neurons (SGNs) in the ear provides a future alternative to electrical stimulation used in cochlear implants. However, most channelrhodopsins do not support the high temporal fidelity pertinent to auditory coding because they require milliseconds to close after light-off.
View Article and Find Full Text PDFWhen hearing fails, cochlear implants (CIs) provide open speech perception to most of the currently half a million CI users. CIs bypass the defective sensory organ and stimulate the auditory nerve electrically. The major bottleneck of current CIs is the poor coding of spectral information, which results from wide current spread from each electrode contact.
View Article and Find Full Text PDFOptogenetics revolutionizes basic research in neuroscience and cell biology and bears potential for medical applications. We develop mutants leading to a unifying concept for the construction of various channelrhodopsins with fast closing kinetics. Due to different absorption maxima these channelrhodopsins allow fast neural photoactivation over the whole range of the visible spectrum.
View Article and Find Full Text PDFEpilepsy may arise following acute brain insults, but no treatments exist that prevent epilepsy in patients at risk. Here we examined whether a combination of two glutamate receptor antagonists, NBQX and ifenprodil, acting at different receptor subtypes, exerts antiepileptogenic effects in the intrahippocampal kainate mouse model of epilepsy. These drugs were administered over 5 days following kainate.
View Article and Find Full Text PDFIn rodent models in which status epilepticus (SE) is used to induce epilepsy, typically most animals develop spontaneous recurrent seizures (SRS). The SE duration for induction of epileptogenesis depends on the type of SE induction. In models with electrical SE induction, the minimum duration of SE to induce epileptogenesis in >90% of animals ranges from 3-4h.
View Article and Find Full Text PDFPrevention of symptomatic epilepsy ("antiepileptogenesis") in patients at risk is a major unmet clinical need. Several drugs underwent clinical trials for epilepsy prevention, but none of the drugs tested was effective. Similarly, most previous preclinical attempts to develop antiepileptogenic strategies failed.
View Article and Find Full Text PDFThe activation of N-methyl-D-aspartate-receptors (NMDARs) in synapses provides plasticity and cell survival signals, whereas NMDARs residing in the neuronal membrane outside synapses trigger neurodegeneration. At present, it is unclear how these opposing signals are transduced to and discriminated by the nucleus. In this study, we demonstrate that Jacob is a protein messenger that encodes the origin of synaptic versus extrasynaptic NMDAR signals and delivers them to the nucleus.
View Article and Find Full Text PDFNeuronal high-voltage-activated (HVA) Ca(2+) channels are rapidly inactivated by a mechanism that is termed Ca(2+)-dependent inactivation (CDI). In this study we have shown that β-adrenergic receptor (βAR) stimulation inhibits CDI in rat thalamocortical (TC) relay neurons. This effect can be blocked by inhibition of cAMP-dependent protein kinase (PKA) with a cell-permeable inhibitor (myristoylated protein kinase inhibitor-(14-22)-amide) or A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide, suggesting a critical role of these molecules downstream of the receptor.
View Article and Find Full Text PDFWe demonstrated recently that opioid-induced activation of phospholipase D2 (PLD2) enhances mu- (MOPr) and delta-opioid receptor endocytosis/recycling and thus reduces the development of opioid receptor desensitization and tolerance. However, the mechanistic basis for the PLD2-mediated induction of opioid receptor endocytosis is currently unknown. Here we show that PLD2-generated phosphatidic acid (PA) might play a key role in facilitating the endocytosis of opioid receptors.
View Article and Find Full Text PDFNeuronal Ca(2+) channels are rapidly inactivated by a mechanism that is termed Ca(2+)-dependent inactivation (CDI). In this study we investigated the influence of intracellular Ca(2+) release on CDI of high-voltage-activated Ca(2+) channels in rat thalamocortical relay neurons by combining voltage-clamp, Ca(2+) imaging and immunological techniques. Double-pulse protocols revealed CDI, which depended on the length of the conditioning pulses.
View Article and Find Full Text PDFEndocytosis of the mu-opioid receptor (MOPr) has been shown to play a protective role against the development of tolerance to opioid drugs by facilitating receptor reactivation and recycling. It has been further demonstrated, that the opioid-mediated and ADP-ribosylation factor (ARF)-dependent activation of phospholipase D2 (PLD2) is a prerequisite for MOPr endocytosis. In this study, we investigated which particular ARF protein is involved in opioid-mediated PLD2 activation and what are the mechanisms of ARF function in MOPr trafficking and signaling.
View Article and Find Full Text PDF