Publications by authors named "Vladan Koncar"

This study presents the development and evaluation of an innovative intelligent garment system, incorporating 3D knitted silver biopotential electrodes, designed for long-term sports monitoring. By integrating advanced textile engineering with wearable monitoring technologies, we introduce a novel approach to real-time physiological signal acquisition, focusing on enhancing athletic performance analysis and fatigue detection. Utilizing low-resistance silver fibers, our electrodes demonstrate significantly reduced skin-to-electrode impedance, facilitating improved signal quality and reliability, especially during physical activities.

View Article and Find Full Text PDF

Background: Ventricular arrhythmia in hypertrophic cardiomyopathy (HCM) relates to adverse structural change and genetic status. Cardiovascular magnetic resonance (CMR)-guided electrocardiographic imaging (ECGI) noninvasively maps cardiac structural and electrophysiological (EP) properties.

Objectives: The purpose of this study was to establish whether in subclinical HCM (genotype [G]+ left ventricular hypertrophy [LVH]-), ECGI detects early EP abnormality, and in overt HCM, whether the EP substrate relates to genetic status (G+/G-LVH+) and structural phenotype.

View Article and Find Full Text PDF

Background: Electrocardiographic imaging (ECGI) generates electrophysiological (EP) biomarkers while cardiovascular magnetic resonance (CMR) imaging provides data about myocardial structure, function and tissue substrate. Combining this information in one examination is desirable but requires an affordable, reusable, and high-throughput solution. We therefore developed the CMR-ECGI vest and carried out this technical development study to assess its feasibility and repeatability in vivo.

View Article and Find Full Text PDF

An original fully textile combiner is proposed to power supply sensors close to a body with only one centralized source of energy like a smartphone, for instance. A solution is provided for taking into account the requirements of an industrial production process that need to minimize needle movements during an embroidery process. Moreover, the paper shows how to support several wireless power transmission standards that already exist, i.

View Article and Find Full Text PDF

Smart and e-textiles have nowadays an important increasing place in the garment industry. The rise of embedded telecommunications, especially smartphones in our pocket, enables us to provide a power source and a wireless link for smart textiles. The main issue is to develop garments able to receive power from smartphones and communicate with them without flexibility and comfort constraints bound to embedded solid-state electronic components.

View Article and Find Full Text PDF

E-textiles reveal a new and hybrid sector of the industry that is created by the integration of electronic components or textile-based electronics in our daily life textile products. They are facing problems in terms of washability, reliability, and user acceptance. This manuscript explains the mechanical stresses acting during the washing process and their impact on e-textile systems.

View Article and Find Full Text PDF

(1) Background: millions of people, from children to the elderly, suffer from bladder dysfunctions all over the world. Monitoring bladder fullness with appropriate miniaturized textile devices can improve, significantly, their daily life quality, or even cure them. Amongst the existing bladder sensing technologies, bioimpedance spectroscopy seems to be the most appropriate one to be integrated into textiles.

View Article and Find Full Text PDF

This review summarizes the recent developments and importance of wearable electronic textiles in the past decade. Wearable electronic textiles are an emerging interdisciplinary research area that requires new design approaches. This challenging interdisciplinary research field brings together specialists in electronics, information technology, microsystems, and textiles to make an innovation in the development of wearable electronic products.

View Article and Find Full Text PDF

Around 15% of children still wet their bed after five years old. Although bedwetting alarms have proven to be effective to achieve nighttime dryness, they are cumbersome so children could be reluctant to use them. Therefore, the moisture sensor and wire were made unobtrusive by seamlessly integrated them into fully textile underwear by using conductive yarns.

View Article and Find Full Text PDF

Although market prediction for smart textiles in the coming years is high, their washability will be among the main criteria for their mass adoption. Hence, the need to understand precisely how the washing process can damage them. Therefore, the best care instructions can be determined and serve as guidelines for smart textile manufacturers to control the quality of their smart garments as well as their customers to wash them cautiously.

View Article and Find Full Text PDF

Reliability and washability are major hurdles facing the e-textile industry nowadays. The main fear behind the product's rejection is the inability to ensure its projected life span. The durability of e-textiles is based on an approximate lifetime of both the electronics and textiles integrated into the product.

View Article and Find Full Text PDF

A development of washable PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) polyamide textile-based electrodes is an interesting alternative to the traditional Ag/AgCl disposable electrodes, usually used in clinical practice, helping to improve medical assessment and treatment before apparition or progress of patients' cardiovascular symptoms. This study was conducted in order to determine whether physical properties of PEDOT:PSS had a significant impact on the coated electrode's electrocardiogram (ECG) signal quality, particularly after 50 washing cycles in a domestic laundry machine. Tests performed, included the comparison of two PEDOT:PSS solutions, in term of viscosity with emphasis on wetting tests, including surface tension and contact angle measurements.

View Article and Find Full Text PDF

Long-term monitoring of the electrical activity of the heart helps to detect the presence of potential dysfunctions, enabling the diagnosis of a wide range of cardiac pathologies. However, standard electrodes used for electrocardiogram (ECG) acquisition are not fully integrated into garments, and generally need to be used with a gel to improve contact resistance. This article is focused on the development of washable screen-printed cotton, with and without Lycra, textile electrodes providing a medical quality ECG signal to be used for long-term electrocardiography measurements.

View Article and Find Full Text PDF

A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance.

View Article and Find Full Text PDF

Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts.

View Article and Find Full Text PDF

In this paper, the washability of wearable textronic (textile-electronic) devices has been studied. Two different approaches aiming at designing, producing, and testing robust washable and reliable smart textile systems are presented. The common point of the two approaches is the use of flexible conductive PCB in order to interface the miniaturized rigid (traditional) electronic devices to conductive threads and tracks within the textile flexible fabric and to connect them to antenna, textile electrodes, sensors, actuators, etc.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery.

View Article and Find Full Text PDF

The quality of fibrous reinforcements used in composite materials can be monitored during the weaving process. Fibrous sensors previously developed in our laboratory, based on PEDOT:PSS, have been adapted so as to directly measure the mechanical stress on fabrics under static or dynamic conditions. The objective of our research has been to develop new sensor yarns, with the ability to locally detect mechanical stresses all along the warp or weft yarn.

View Article and Find Full Text PDF

A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin.

View Article and Find Full Text PDF

This article describes further development of a novel Non Destructive Evaluation (NDE) approach described in one of our previous papers. Here these sensors have been used for the first time as a Piecewise Continuous System (PCS), which means that they are not only capable of following the deformation pattern but can also detect distinctive fracture events. In order to characterize the simultaneous compression and traction response of these sensors, multilayer glass laminate composite samples were prepared for 3-point bending tests.

View Article and Find Full Text PDF

A sensor based on a Conductive Polymer Composite (CPC), fully compatible with a textile substrate and its general properties, has been developed in our laboratory, and its electromechanical characterization is presented herein. In particular the effects of strain rate (from 10 to 1,000 mm/min) and of repeated elongation cycles on the sensor behaviour are investigated. The results show that strain rate seems to have little influence on sensor response.

View Article and Find Full Text PDF