Background: Thromboembolic events, including myocardial infarction (MI) or stroke, caused by the rupture or erosion of unstable atherosclerotic plaques are the leading cause of death worldwide. Although most mouse models of atherosclerosis develop lesions in the aorta and carotid arteries, they do not develop advanced coronary artery lesions. Moreover, they do not undergo spontaneous plaque rupture with MI and stroke or do so at such a low frequency that they are not viable experimental models to study late-stage thrombotic events or to identify novel therapeutic approaches for treating atherosclerotic disease.
View Article and Find Full Text PDFBackground: Distinct endothelial cell cycle states (early G1 versus late G1) provide different "windows of opportunity" to enable the differential expression of genes that regulate venous versus arterial specification, respectively. Endothelial cell cycle control and arteriovenous identities are disrupted in vascular malformations including arteriovenous shunts, the hallmark of hereditary hemorrhagic telangiectasia (HHT). To date, the mechanistic link between endothelial cell cycle regulation and the development of arteriovenous malformations (AVMs) in HHT is not known.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2023
Diacylglycerol lipase-beta (DAGLβ) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLβ ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2023
Background: The promoter is extensively used as a smooth muscle cell (SMC) Cre-driver and is regarded as the most restrictive and specific promoter available to study SMCs. Unfortunately, in the existing mouse, the transgene was inserted on the Y chromosome precluding the study of female mice. Given the importance of including sex as a biological variable and that numerous SMC-based diseases have a sex-dependent bias, the field has been tremendously limited by the lack of a model to study both sexes.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2022
The fat mass and obesity gene (FTO) is a -methyladenosine RNA demethylase that was initially linked by Genome-wide association studies to increased rates of obesity. Subsequent studies have revealed multiple mass-independent effects of the gene, including cardiac myocyte contractility. We created a mouse with a conditional and inducible smooth muscle cell deletion of Fto (Myh11 Cre ) and did not observe any changes in mouse body mass or mitochondrial metabolism.
View Article and Find Full Text PDFHuman recombinant B cell activating factor (BAFF) is secreted as 3-mers, which can associate to form 60-mers in culture supernatants. However, the presence of BAFF multimers in humans is still debated and it is incompletely understood how BAFF multimers activate the B cells. Here, we demonstrate that BAFF can exist as 60-mers or higher order multimers in human plasma.
View Article and Find Full Text PDFElevated levels of sphingosine 1-phosphate (S1P) and increased expression of sphingosine kinase isoforms (SphK1 and SphK2) have been implicated in a variety of disease states including cancer, inflammation, and autoimmunity. Consequently, the S1P signaling axis has become an attractive target for drug discovery. Selective inhibition of either SphK1 or SphK2 has been demonstrated to be effective in modulating S1P levels in animal models.
View Article and Find Full Text PDFObjective: Brown adipose tissue (BAT) is specialized in thermogenesis. The conversion of energy into heat in brown adipocytes proceeds via stimulation of β-adrenergic receptor (βAR)-dependent signaling and activation of mitochondrial uncoupling protein 1 (UCP1). We have previously demonstrated a functional role for pannexin-1 (Panx1) channels in white adipose tissue; however, it is not known whether Panx1 channels play a role in the regulation of brown adipocyte function.
View Article and Find Full Text PDFSmall molecules that promote the metabolic activity of the pyruvate kinase isoform PKM2, such as TEPP-46 and DASA-58, limit tumorigenesis and inflammation. To understand how these compounds alter T cell function, we assessed their therapeutic activity in a mouse model of T cell-mediated autoimmunity that mimics multiple sclerosis (MS). T17 cells are believed to orchestrate MS pathology, in part, through the production of two proinflammatory cytokines: interleukin-17 (IL-17) and GM-CSF.
View Article and Find Full Text PDFHeme is an essential cofactor for numerous cellular functions, but release of free heme during hemolysis results in oxidative tissue damage, vascular dysfunction, and inflammation. Macrophages play a key protective role in heme clearance; however, the mechanisms that regulate metabolic adaptations that are required for effective heme degradation remain unclear. Here we demonstrate that heme loading drives a unique bioenergetic switch in macrophages, which involves a metabolic shift from oxidative phosphorylation toward glucose consumption.
View Article and Find Full Text PDFRationale: Increasing prevalence of obesity and its associated risk with cardiovascular diseases demands a better understanding of the contribution of different cell types within this complex disease for developing new treatment options. Previous studies could prove a fundamental role of FTO (fat mass and obesity-associated protein) within obesity; however, its functional role within different cell types is less understood.
Objectives: We identify endothelial FTO as a previously unknown central regulator of both obesity-induced metabolic and vascular alterations.
Despite growing acknowledgement of the role of oxidized fatty acids (oxFA) as cellular signaling molecules and in the pathogenesis of disease, developing methods to measure these species in biological samples has proven challenging. Here we describe a novel method utilizing HPLC-ESI-MS/MS to identify and quantify multiple full-length oxFA species in a regioisomer-independent manner without the need for time-consuming sample preparation or derivatization. Building on recent progress in the characterization of FA and their oxidation products by MS/MS, we employed positive-ion ionization by measuring sodium adducts in conjunction with Differential Energy Qualifier Ion Monitoring to unequivocally verify the presence of the hydroperoxide, hydroxide, and ketone oxidation products of linoleic and arachidonic acid.
View Article and Find Full Text PDFDevelopment and routine tissue homeostasis require a high turnover of apoptotic cells. These cells are removed by professional and non-professional phagocytes via efferocytosis. How a phagocyte maintains its homeostasis while coordinating corpse uptake, processing ingested materials and secreting anti-inflammatory mediators is incompletely understood.
View Article and Find Full Text PDFAdipose tissue macrophages (ATMs) adapt their metabolic phenotype either to maintain lean tissue homeostasis or drive inflammation and insulin resistance in obesity. However, the factors in the adipose tissue microenvironment that control ATM phenotypic polarization and bioenergetics remain unknown. We have recently shown that oxidized phospholipids (OxPL) uniquely regulate gene expression and cellular metabolism in macrophages, but the presence of the phenotype in adipose tissue has not been reported.
View Article and Find Full Text PDFObjective: Neutrophils promote experimental abdominal aortic aneurysm (AAA) formation via a mechanism that is independent from MMPs (matrix metalloproteinases). Recently, we reported a dominant role of IL (interleukin)-1β in the formation of murine experimental AAAs. Here, the hypothesis that IL-1β-induced neutrophil extracellular trap formation (NETosis) promotes AAA was tested.
View Article and Find Full Text PDFGeographic atrophy is a blinding form of age-related macular degeneration characterized by retinal pigmented epithelium (RPE) death; the RPE also exhibits DICER1 deficiency, resultant accumulation of endogenous Alu-retroelement RNA, and NLRP3-inflammasome activation. How the inflammasome is activated in this untreatable disease is largely unknown. Here we demonstrate that RPE degeneration in human-cell-culture and mouse models is driven by a noncanonical-inflammasome pathway that activates caspase-4 (caspase-11 in mice) and caspase-1, and requires cyclic GMP-AMP synthase (cGAS)-dependent interferon-β production and gasdermin D-dependent interleukin-18 secretion.
View Article and Find Full Text PDFObjective: Macrophages control tissue homeostasis and inflammation by sensing and responding to environmental cues. However, the metabolic adaptation of macrophages to oxidative tissue damage and its translation into inflammatory mechanisms remains enigmatic.
Methods: Here we identify the critical regulatory pathways that are induced by endogenous oxidation-derived DAMPs (oxidized phospholipids, OxPL) in vitro, leading to formation of a unique redox-regulatory metabolic phenotype (Mox), which is strikingly different from conventional classical or alternative macrophage activation.
Glioblastoma (GBM) is a deadly brain tumor marked by dysregulated signaling and aberrant cell-cycle control. Molecular analyses have identified that the CDK4/6-Rb-E2F axis is dysregulated in about 80% of GBMs. Single-agent CDK4/6 inhibitors have failed to provide durable responses in GBM, suggesting a need to combine them with other agents.
View Article and Find Full Text PDFFree Radic Biol Med
October 2017
Oxidized phospholipids are products of lipid oxidation that are found on oxidized low-density lipoproteins and apoptotic cell membranes. These biologically active lipids were shown to affect a variety of cell types and attributed pro-as well as anti-inflammatory effects. In particular, macrophages exposed to oxidized phospholipids drastically change their gene expression pattern and function.
View Article and Find Full Text PDFSignificance: Redox signaling is one of the key elements involved in cardiovascular diseases. Two important molecules are the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the oxidoreductase thioredoxin-1 (Trx-1). Recent Advances: During the previous years, a lot of studies investigated Nrf2 and Trx-1 as protective proteins in cardiovascular disorders.
View Article and Find Full Text PDFIntroduction: We hypothesize that the combination of transarterial embolization (TAE) plus inhibition of lactate export will limit anaerobic metabolism and reduce tumor survival compared to TAE alone. The purpose of this study was to test this hypothesis in a rat model of hepatocellular carcinoma (HCC).
Methods: Rat N1-S1 hepatoma cells were assayed in vitro using the Seahorse XF analyzer to measure extracellular acidification (lactate excretion) comparing effects of the addition of caffeic acid (CA) or ferulic acid (FA) or UK-5099 with control.
Unlabelled: The APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1) has a disordered N-terminus, a redox, and a DNA repair domain. APEX1 has anti-apoptotic properties, which have been linked to both domains depending on cell type and experimental conditions.
Aims: As protection against apoptosis is a hallmark of vessel integrity, we wanted to elucidate whether APEX1 acts anti-apoptotic in primary human endothelial cells and, if so, what the underlying mechanisms are.