Publications by authors named "Vlad Kumirov"

The preparation of high-sulfur content organosulfur polymers has generated considerable interest as an emerging area in polymer science that has been driven by advances in the inverse vulcanization polymerization of elemental sulfur with organic comonomers. While numerous new inverse vulcanized polysulfides have been made over the past decade, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers remain limited in scope. Furthermore, the exploration of new molecular architectures for organic comonomer synthesis remains an important frontier to enhance the properties of these new polymeric materials.

View Article and Find Full Text PDF

The extra-cellular matrix (ECM) is a complex and rich microenvironment that is exposed and over-expressed across several injury or disease pathologies. Biomaterial therapeutics are often enriched with peptide binders to target the ECM with greater specificity. Hyaluronic acid (HA) is a major component of the ECM, yet to date, few HA adherent peptides have been discovered.

View Article and Find Full Text PDF
Article Synopsis
  • Opioids are commonly used to treat both acute and chronic pain, but they come with serious side effects like constipation, dependence, respiratory issues, and overdose risks, contributing to the opioid crisis.
  • There is a pressing need for non-addictive pain relief options, and oxytocin has emerged as a potential alternative for both pain management and prevention of opioid use disorder.
  • New oxytocin analogues, created by altering its chemical structure for better stability and brain penetration, have demonstrated strong effectiveness in pain relief in mice, indicating promising clinical applications for future research.
View Article and Find Full Text PDF

A recent study illustrated that a fluorescence polarization assay can be used to identify substrate-competitive Hsp70 inhibitors that can be isoform-selective. Herein, we use that assay in a moderate-throughput screen and report the discovery of a druglike amino-acid-based inhibitor with reasonable specificity for the endoplasmic reticular Hsp70, Grp78. Using traditional medicinal chemistry approaches, the potency and selectivity were further optimized through structure-activity relationship (SAR) studies in parallel assays for six of the human Hsp70 isoforms.

View Article and Find Full Text PDF

A polymerization methodology is reported using sulfur monochloride (SCl) as an alternative feedstock for polymeric materials. SCl is an inexpensive petrochemical derived from elemental sulfur (S) but has numerous advantages as a reactive monomer for polymerization vs S. This new process, termed sulfenyl chloride inverse vulcanization, exploits the high reactivity and miscibility of SCl with a broad range of allylic monomers to prepare soluble, high molar-mass linear polymers, segmented block copolymers, and crosslinked thermosets with greater synthetic precision than achieved using classical inverse vulcanization.

View Article and Find Full Text PDF

A new intramolecular oxidative amino-hydroxylation of -allenyl anilines is reported. Treatment of carbamate-protected anilines with lead(IV) carboxylates in dichloromethane at room temperature results in facile tandem C-N (allene cyclization) and C-O bond formation (carboxylate trapping) to form indole products. Detailed reaction scope, mechanistic and kinetic studies suggest a reaction pathway involving an initial Wessely dearomatization step followed by cyclization and rearomatization.

View Article and Find Full Text PDF

TAR DNA-binding protein 43 (TDP-43) is a ubiquitously expressed nuclear protein that influences diverse cellular processes by regulating alternative splicing of RNA and microRNA biogenesis. It is also a pathological protein found in sporadic ALS and in the most common subtype of frontotemporal lobar degeneration with ubiquitinated inclusions (FLTD-U). TDP-43 has two tandem RNA-binding domains, RRM1 and RRM2.

View Article and Find Full Text PDF

New protein folds may evolve from existing folds through metamorphic evolution involving a dramatic switch in structure. To mimic pathways by which amino acid sequence changes could induce a change in fold, we designed two folded hybrids of Xfaso 1 and Pfl 6, a pair of homologous Cro protein sequences with ~40% identity but different folds (all-α vs. α + β, respectively).

View Article and Find Full Text PDF

Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex.

View Article and Find Full Text PDF

The de novo evolution of protein-coding genes from noncoding DNA is emerging as a source of molecular innovation in biology. Studies of random sequence libraries, however, suggest that young de novo proteins will not fold into compact, specific structures typical of native globular proteins. Here we show that Bsc4, a functional, natural de novo protein encoded by a gene that evolved recently from noncoding DNA in the yeast S.

View Article and Find Full Text PDF

Several studies have suggested functional association between μ-opioid and δ-opioid receptors and showed that μ-activity could be modulated by δ-ligands. The general conclusion is that agonists for the δ-receptor can enhance the analgesic potency and efficacy of μ-agonists. Our preliminary investigations demonstrate that new bivalent ligands constructed from the μ-agonist fentanyl and the δ-agonist enkephalin-like peptides are promising entities for creation of new analgesics with reduced side effects for treatment of neuropathic pain.

View Article and Find Full Text PDF

The molecular mechanism through which the interaction of a clonotypic αβ T-cell receptor (TCR) with a peptide-loaded major histocompatibility complex (p/MHC) leads to T-cell activation is not yet fully understood. Here we exploit a high-affinity TCR (B4.2.

View Article and Find Full Text PDF

To study the sequence determinants governing protein fold evolution, we generated hybrid sequences from two homologous proteins with 40% identity but different folds: Pfl 6 Cro, which has a mixed α + β structure, and Xfaso 1 Cro, which has an all α-helical structure. First, we first examined eight chimeric hybrids in which the more structurally conserved N-terminal half of one protein was fused to the more structurally divergent C-terminal half of the other. None of these chimeras folded, as judged by circular dichroism spectra and thermal melts, suggesting that both halves have strong intrinsic preferences for the native global fold pattern, and/or that the interfaces between the halves are not readily interchangeable.

View Article and Find Full Text PDF

Unlabelled: Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery.

View Article and Find Full Text PDF

Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis.

View Article and Find Full Text PDF

Newly designed bivalent ligands-opioid agonist/NK1-antagonists have been synthesized. The synthesis of new starting materials-carboxy-derivatives of Fentanyl (1a-1c) was developed. These products have been transformed to 'isoimidium perchlorates' (2a-c).

View Article and Find Full Text PDF

Three compounds, each derived from Fentanyl and differing essentially only in the length of a carboxylic acid chain, were synthesized and yielded four crystal structures three of which share several structural similarities, including the length of the chain, while the fourth, with a shorter chain, is quite different. The chain length has a significant influence on the crystal structures formed. The 'three atom' chain compounds are all solvated zwitterions which feature a hydrogen-bonded 'dimer' between adjacent zwitterions.

View Article and Find Full Text PDF