In this study, we identify a separate role for the l-fucose dehydrogenase in l-fucose chemotaxis and demonstrate that this mechanism is not only limited to but is also present in . We now hypothesize that l-fucose energy taxis may contribute to the reduction of l-fucose-metabolizing strains of from the gastrointestinal tract of breastfed infants, selecting for isolates with increased colonization potential.
View Article and Find Full Text PDFCurrent practices for structural analysis of extremely large-molecular-weight polysaccharides via solution-state nuclear magnetic resonance (NMR) spectroscopy incorporate partial depolymerization protocols that enable polysaccharide solubilization in suitable solvents. Non-specific depolymerization techniques utilized for glycosidic bond cleavage, such as chemical degradation or ultrasonication, potentially generate structural fragments that can complicate complete and accurate characterization of polysaccharide structures. Utilization of appropriate enzymes for polysaccharide degradation, on the other hand, requires prior structural knowledge and optimal enzyme activity conditions that are not available to an analyst working with novel or unknown compounds.
View Article and Find Full Text PDFGlycosyl composition and linkage analyses are important first steps toward understanding the structural diversity and biological importance of polysaccharides. Failure to fully solubilize samples prior to analysis results in the generation of incomplete and poor-quality composition and linkage data by gas chromatography-mass spectrometry (GC-MS). Acidic polysaccharides also do not give accurate linkage results, because they are poorly soluble in DMSO and tend to undergo β-elimination during permethylation.
View Article and Find Full Text PDFCurrent practices for structure analysis of extremely large molecular weight polysaccharides via solution-state NMR spectroscopy incorporate partial depolymerization protocols that enable polysaccharide solubilization in suitable solvents. Non-specific depolymerization techniques utilized for glycosidic bond cleavage, such as chemical degradation or ultrasonication, potentially generate structure fragments that can complicate the complete characterization of polysaccharide structures. Utilization of appropriate enzymes for polysaccharide degradation, on the other hand, requires prior structure information and optimal enzyme activity conditions that are not available to the analyst working with novel or unknown compounds.
View Article and Find Full Text PDFAutoimmune diseases vary in the magnitude and diversity of autoantibody profiles, and these differences may be a consequence of different types of breaks in tolerance. Here, we compared the disparate autoimmune diseases autoimmune polyendocrinopathy-candidiasis-ecto-dermal dystrophy (APECED), systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS) to gain insight into the etiology of breaks in tolerance triggering autoimmunity. APECED was chosen as a prototypical monogenic disease with organ-specific pathology while SjS and SLE represent polygenic autoimmunity with focal or systemic disease.
View Article and Find Full Text PDFKingella kingae is a leading cause of bone and joint infections and other invasive diseases in young children. A key K. kingae virulence determinant is a secreted exopolysaccharide that mediates resistance to serum complement and neutrophils and is required for full pathogenicity.
View Article and Find Full Text PDFO antigens are ubiquitous protective extensions of lipopolysaccharides in the extracellular leaflet of the Gram-negative outer membrane. Following biosynthesis in the cytosol, the lipid-linked polysaccharide is transported to the periplasm by the WzmWzt ABC transporter. Often, O antigen secretion requires the chemical modification of its elongating terminus, which the transporter recognizes via a carbohydrate-binding domain (CBD).
View Article and Find Full Text PDFThe relationship between deformation and stress is crucial for any elasto-plastic body. This paper deals with the experimental identification of the basic parameters of the composite laminate model in relation to the finite element model. Standardized tensile, impact, and post-impact tests on a carbon fiber-reinforced epoxy laminate were used.
View Article and Find Full Text PDFEpidemiol Mikrobiol Imunol
August 2022
Aim: To assess the trends and changes in the incidence of invasive disease caused by Haemophilus influenzae in the Czech Republic (CR) between 1999 and 2020 with regard to the introduction of childhood vaccination against H. influenzae serotype b (Hib) in 2001. Characterization of strains by multilocus sequence typing (MLST) and search for correlations between serotypes, sequence types, and patient groups or clinical manifestations of the disease.
View Article and Find Full Text PDFTo solve problems in the field of mechanical engineering efficiently, individual numerical procedures must be developed, and solvers must be adapted. This study applies the results of a carbon-fibre reinforced polymer (CFRP) analysis along with the nonlinear finite element damage (FE) method to the translation of a linear solver. The analyzed tensile test sample is modelled using the ply-by-ply method.
View Article and Find Full Text PDFBackground: Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 pandemic.
Methods: In this prospective analysis of surveillance data, laboratories in 26 countries and territories across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative.
Toll-like receptor (TLR) 7 and TLR8 are transmembrane receptors that recognize single-stranded RNA. Activation of these receptors results in immune cell stimulation and inflammatory cytokine production, which is normally a protective host response. However, aberrant activation of TLR7/8 is potentially pathogenic and linked to progression of certain autoimmune diseases such as lupus.
View Article and Find Full Text PDFis a leading cause of food-poisoning and causes avian necrotic enteritis, posing a significant problem to both the poultry industry and human health. No effective vaccine against is currently available. Using an antiserum screen of mutants generated from a transposon-mutant library, here we identified an immunoreactive antigen that was lost in a putative glycosyltransferase mutant, suggesting that this antigen is likely a glycoconjugate.
View Article and Find Full Text PDFWe are exposed daily to many glycans from bacteria and food plants. Bacterial glycans are generally antigenic and elicit antibody responses. It is unclear if food glycans' sharing of antigens with bacterial glycans influences our immune responses to bacteria.
View Article and Find Full Text PDFTLR7 and TLR8 are pattern recognition receptors that reside in the endosome and are activated by ssRNA molecules. TLR7 and TLR8 are normally part of the antiviral defense response, but they have also been implicated as drivers of autoimmune diseases such as lupus. The receptors have slightly different ligand-binding specificities and cellular expression patterns that suggest they have nonredundant specialized roles.
View Article and Find Full Text PDFDuring the late phase of the HIV-1 replication cycle, the viral Gag polyproteins are targeted to the plasma membrane for assembly. The Gag-membrane interaction is mediated by binding of Gag's N-terminal myristoylated matrix (MA) domain to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P). The viral envelope (Env) glycoprotein is then recruited to the assembly sites and incorporated into budding particles.
View Article and Find Full Text PDFPneumococcal conjugate vaccines have been successful, but their use has increased infections by nonvaccine serotypes. Oral streptococci often harbor capsular polysaccharide (PS) synthesis loci (cps). Although this has not been observed in nature, if pneumococcus can replace its cps with oral streptococcal cps, it may increase its serotype repertoire.
View Article and Find Full Text PDFCalcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine protein kinase that transmits calcium signals in various cellular processes. CaMKII is activated by calcium-bound calmodulin (Ca/CaM) through a direct binding mechanism involving a regulatory C-terminal α-helix in CaMKII. The Ca/CaM binding triggers transphosphorylation of critical threonine residues proximal to the CaM-binding site leading to the autoactivated state of CaMKII.
View Article and Find Full Text PDFUpon host infection, secretes the tuberculosis necrotizing toxin (TNT) into the cytosol of infected macrophages, leading to host cell death by necroptosis. TNT hydrolyzes NAD in the absence of any exogenous cofactor, thus classifying it as a β-NAD glycohydrolase. However, TNT lacks sequence similarity with other NAD hydrolyzing enzymes and lacks the essential motifs involved in NAD binding and hydrolysis by these enzymes.
View Article and Find Full Text PDFFor most retroviruses, including HIV-1, binding of the Gag polyprotein to the plasma membrane (PM) is mediated by interactions between Gag's N-terminal myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P) in the PM. The Gag protein of avian sarcoma virus (ASV) lacks the -myristoylation signal but contains structural domains having functions similar to those of HIV-1 Gag. The molecular mechanism by which ASV Gag binds to the PM is incompletely understood.
View Article and Find Full Text PDFThe Gag protein of avian sarcoma virus (ASV) lacks an -myristoyl (myr) group, but contains structural domains similar to those of HIV-1 Gag. Similarly to HIV-1, ASV Gag accumulates on the plasma membrane (PM) before egress; however, it is unclear whether the phospholipid PI(4,5)P binds directly to the matrix (MA) domain of ASV Gag, as is the case for HIV-1 Gag. Moreover, the role of PI(4,5)P in ASV Gag localization and budding has been controversial.
View Article and Find Full Text PDFThe cytoplasmic tail of gp41 (gp41CT) remains the last HIV-1 domain with an unknown structure. It plays important roles in HIV-1 replication such as mediating envelope (Env) intracellular trafficking and incorporation into assembling virions, mechanisms of which are poorly understood. Here, we present the solution structure of gp41CT in a micellar environment and characterize its interaction with the membrane.
View Article and Find Full Text PDFIn the last decade, strains of the genera and have been misclassified as first and later Because is a serious foodborne pathogen that affects premature neonates and elderly individuals, such misidentification may not only falsify epidemiological statistics but also lead to tests of powdered infant formula or other foods giving false results. Currently, the main ways of identifying and strains are by biochemical testing or by sequencing of the gene as part of multilocus sequence typing (MLST), but in relation to these strains the former is generally highly difficult and unreliable while the latter remains expensive. To address this, we developed a fast, simple, and most importantly, reliable method for and identification based on intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).
View Article and Find Full Text PDF