Background: Allergen-specific immunotherapy (AIT) induces specific blocking antibodies (Ab), which are claimed to prevent IgE-mediated reactions to allergens. Additionally, AIT modulates cellular responses to allergens, for example, by desensitizing effector cells, inducing regulatory T and B lymphocytes and immune deviation. It is still enigmatic which of these mechanisms mediate(s) clinical tolerance.
View Article and Find Full Text PDFThe lysosome-associated membrane protein (LAMP) family includes the dendritic cell endocytic receptors DC-LAMP and CD68, as well as LAMP-1 and LAMP-2. In this study we identify LAMP-1 (CD107a) and LAMP-2 (CD107b) on the surface of human monocyte-derived dendritic cells (MoDC) and show only LAMP-2 is internalized after ligation by specific Abs, including H4B4, and traffics rapidly but transiently to the MHC class II loading compartment, as does Ag conjugated to H4B4. However, pulsing MoDC with conjugates of primary (keyhole limpet hemocyanin; KLH) and recall (Bet v 1) Ags (H4B4*KLH and H4B4*Bet v 1) induced significantly less CD4 cell proliferation than pulsing with native Ag or Ag conjugated to control mAb (ISO*KLH and ISO*Bet v 1).
View Article and Find Full Text PDFLipocalin 2 (LCN2), which is highly expressed by dendritic cells (DCs) when treated with dexamethasone (Dex) and lipopolysaccharide (LPS), plays a key role in the defence against bacteria and is also involved in the autocrine apoptosis of T-cells. However, the function of LCN2 when secreted by DCs is unknown: this is a critical gap in our understanding of the regulation of innate and adaptive immune systems. Tolerance, stimulation and suppression are functions of DCs that facilitate the fine-tuning of the immune responses and which are possibly influenced by LCN2 secretion.
View Article and Find Full Text PDFThe dendritic cell (DC) coordinates innate and adaptive immunity to fight infections and cancer. Our observations reveal that DCs exposed to the microbial danger signal lipopolysaccharide (LPS) in the presence of interferon-γ (IFN-γ) acquire a continuously changing activation/maturation phenotype. The DCs' initial mode of action is pro-inflammatory via up-regulation among others of the signaling molecule interleukin (IL) 12, which polarizes IFN-γ secreting type 1 helper T-cells (Th1).
View Article and Find Full Text PDFWhile lipopolysaccharides (LPS) induce dendritic cell (DC) maturation and migration to lymph nodes, glucocorticoids such as dexamethazone (Dex) have a profound suppressive effect on immune response. The mechanisms that might control this suppressive effect of Dex have been extensively investigated in lymphocytes as possible targets. Much less is known on the effects of Dex on DC, although they are recognized to regulate immunity.
View Article and Find Full Text PDFRecognition of pathogen-associated molecular patterns (PAMP) influences the response of dendritic cells (DC) and therefore development of innate and adaptive immunity. Different forms of Leishmania mexicana have distinct effects on DC, with promastigotes and amastigotes being activating and apparently neutral, respectively. We investigated whether stage-specific differences in surface composition might account for these distinct effects.
View Article and Find Full Text PDFBackground: High-density oligonucleotide microarray technology enables the discovery of genes that are transcriptionally modulated in different biological samples due to physiology, disease or intervention. Methods for the identification of these so-called "differentially expressed genes" (DEG) would largely benefit from a deeper knowledge of the intrinsic measurement variability. Though it is clear that variance of repeated measures is highly dependent on the average expression level of a given gene, there is still a lack of consensus on how signal reproducibility is linked to signal intensity.
View Article and Find Full Text PDFSchistosomes are helminth parasites that display a dual impact on the immune system of their hosts. Although the larval stage, also known as schistosomulum, appears to subvert the host defenses, the egg stage induces strong inflammatory reactions. Given the pivotal role of dendritic cells (DC) in initiating and regulating immune responses, we compared the distinct transcriptional programs induced in immature mouse DC by S.
View Article and Find Full Text PDFThe immune system of vertebrate animals is characterized by the capacity to respond to disturbances. This function requires 2 different approaches. First, the immune system responds in a few hours to infectious agents (innate immunity) by recognizing molecular patterns typical of microorganisms (but absent in self-tissues).
View Article and Find Full Text PDFNeonatal porcine islets are characterized by reproducible isolation success and high yields, sizable advantages over adult islets. In this work we have analyzed selected phenotypic and functional characteristics of porcine neonatal islets relevant to their possible use for transplant in humans. We show that porcine islet cells proliferate in culture, and synthesize and store islet-specific hormones.
View Article and Find Full Text PDFAn automated method for the isolation of neonatal porcine adrenal chromaffin cells is described. Adrenal chromaffin cells are potentially useful for therapeutic transplantation, but current isolation methodology suffers from labor intensiveness and variability in yield and viability due to imprecision of manual techniques, enzyme purity, and gland age and species. The described approach utilizes an adaptation of an automated procedure previously described for isolation of pancreatic islets.
View Article and Find Full Text PDFA role of macrophage-mediated inflammatory events in early islet graft loss is increasingly acknowledged. Osteopetrotic mice (op/op) have a complete absence of CSF-1, and thus of most tissue macrophages. We have investigated whether the absence of CSF-1-dependent macrophages in the graft itself or at the transplant site could decrease the delay to function of a syngeneic marginal islet mass.
View Article and Find Full Text PDFImmature and mature dendritic cells (DC) have been well characterized functionally and phenotypically. Microorganisms or bacterial products such as lipopolysaccharide (LPS) and inflammatory molecules, including tumor necrosis factor (TNF-alpha), are both believed to activate the DC maturation program which allows DC to initiate and amplify innate and adaptive immune responses. However, there is increasing evidence that the functional state of DC, induced by different stimuli, may be relevant for the immune response outcome.
View Article and Find Full Text PDFDendritic cells (DCs) are strong activators of primary T cell responses. Their priming ability is acquired upon encounter with maturation stimuli. To identify the genes that are differentially expressed upon maturation induced by exposure to Gram-negative bacteria, a kinetic study of DC gene expression was done with microarrays representing 11,000 genes and ESTs (expressed sequence tags).
View Article and Find Full Text PDFTransplantation of islets of Langerhans represents a viable therapeutic approach for the treatment of type 1 diabetes. Unfortunately, transplanted islets are susceptible to allogeneic recognition and rejection, recurrence of autoimmunity, and destruction by local inflammation at the site of implantation. The last of these phenomena might not only result in functional impairment and death of islet cells but could also contribute to amplifying the subsequent specific immune response.
View Article and Find Full Text PDFBackground: There is substantial evidence to link early graft loss after islet transplantation to isolation-induced islet cell apoptosis. Measurement of caspase 3 activity and detection of the lost cell membrane asymmetry, revealed by annexin V binding, are newly available assays that allow the analysis of early events of apoptosis.
Methods: In this study, we compared these tests with the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and analysis of DNA fragmentation after gel electrophoresis in freshly isolated islets obtained from rats, before and after treatment with interleukin-1 beta, interferon gamma, and tumor necrosis factor a, cytokines known to induce islet cell damage.
Allorejection and recurrence of autoimmunity are the major barriers to transplantation of islets of Langerhans for the cure of type 1 diabetes in humans. CD40-CD154 (CD40 ligand) interaction blockade by the use of anti-CD154 monoclonal antibody (mAb) has shown efficacy in preventing allorejection in several models of organ and cell transplantation. Here we report the beneficial effect of the chronic administration of a hamster anti-murine CD154 mAb, MR1, in prolonging islet graft survival in NOD mice.
View Article and Find Full Text PDFBackground: Primary nonfunction resulting in immediate graft loss is responsible for the failure of a large number of islet transplants. Evidence is accumulating to single out endotoxin contamination of the various reagents needed for islet isolation as a major cause of early graft loss.
Methods: Islets isolated with endotoxin-containing (400 endotoxin units/ml) collagenase type V and "endotoxin-free" (3.
Insulin-dependent diabetes mellitus (IDDM) is a disease caused by a progressive autoimmune destruction of the insulin-producing beta-cells within the pancreas. A major task of diabetes research consists in developing new forms of treatment to delay or prevent the development of the chronic complications associated with the disease. Islet transplantation could become an attractive alternative to whole organ transplantation, since it is a simpler and safer procedure.
View Article and Find Full Text PDF