Publications by authors named "Vivienne Woo"

Objective: Interleukin (IL)-22 is a potential therapeutic protein for the treatment of metabolic diseases such as obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease due to its involvement in multiple cellular pathways and observed hepatoprotective effects. The short serum half-life of IL-22 has previously limited its use in clinical applications; however, the development of mRNA-lipid nanoparticle (LNP) technology offers a novel therapeutic approach that uses a host-generated IL-22 fusion protein. In the present study, the effects of administration of an mRNA-LNP encoding IL-22 on metabolic disease parameters was investigated in various mouse models.

View Article and Find Full Text PDF

Tuft cells in mucosal tissues are key regulators of type 2 immunity. Here, we examined the impact of the microbiota on tuft cell biology in the intestine. Succinate induction of tuft cells and type 2 innate lymphoid cells was elevated with loss of gut microbiota.

View Article and Find Full Text PDF

Aberrant immune responses to resident microbes promote inflammatory bowel disease and other chronic inflammatory conditions. However, how microbiota-specific immunity is controlled in mucosal tissues remains poorly understood. Here, we found that mice lacking epithelial expression of microbiota-sensitive histone deacetylase 3 (HDAC3) exhibited increased accumulation of commensal-specific CD4+ T cells in the intestine, provoking the hypothesis that epithelial HDAC3 may instruct local microbiota-specific immunity.

View Article and Find Full Text PDF

Although diet has long been associated with susceptibility to infection, the dietary components that regulate host defense remain poorly understood. Here, we demonstrate that consuming rice bran decreases susceptibility to intestinal infection with , a murine pathogen that is similar to enteropathogenic infection in humans. Rice bran naturally contains high levels of the substance phytate.

View Article and Find Full Text PDF

The gastrointestinal tract is continuously exposed to trillions of commensal microbes, collectively termed the microbiota, which are environmental stimuli that can direct health and disease within the host. In addition to well-established bacterial sensing pathways, microbial signals are also integrated through epigenetic modifications that calibrate the transcriptional program of host cells without altering the underlying genetic code. Microbiota-sensitive epigenetic changes include modifications to the DNA or histones, as well as regulation of non-coding RNAs.

View Article and Find Full Text PDF

Interactions between the microbiota and mammalian host are essential for defense against infection, but the microbial-derived cues that mediate this relationship remain unclear. Here, we find that intestinal epithelial cell (IEC)-associated commensal bacteria, segmented filamentous bacteria (SFB), promote early protection against the pathogen Citrobacter rodentium, independent of CD4 T cells. SFB induced histone modifications in IECs at sites enriched for retinoic acid receptor motifs, suggesting that SFB may enhance defense through retinoic acid (RA).

View Article and Find Full Text PDF

The coevolution of mammalian hosts and their beneficial commensal microbes has led to development of symbiotic host-microbiota relationships. Epigenetic machinery permits mammalian cells to integrate environmental signals; however, how these pathways are fine-tuned by diverse cues from commensal bacteria is not well understood. Here we reveal a highly selective pathway through which microbiota-derived inositol phosphate regulates histone deacetylase 3 (HDAC3) activity in the intestine.

View Article and Find Full Text PDF

Numerous bacterial pathogens infect the mammalian host by initially associating with epithelial cells that line the intestinal lumen. Recent work has revealed that commensal bacteria that reside in the intestine promote defense against pathogenic infection, however whether the microbiota direct host pathways that alter pathogen adherence is not well-understood. Here, by comparing germ-free mice, we identify that the microbiota decrease bacterial pathogen adherence and dampen epithelial expression of the cell surface glycoprotein C-type lectin 2e (Clec2e).

View Article and Find Full Text PDF

Altered response to the intestinal microbiota strongly associates with inflammatory bowel disease (IBD); however, how commensal microbial cues are integrated by the host during the pathogenesis of IBD is not understood. Epigenetics represents a potential mechanism that could enable intestinal microbes to modulate transcriptional output during the development of IBD. Here, we reveal a histone methylation signature of intestinal epithelial cells isolated from the terminal ilea of newly diagnosed pediatric IBD patients.

View Article and Find Full Text PDF

Background & Aims: Intestinal microbiota modulate metabolism and associate closely with epithelial cells in the intestine. In intestinal epithelial cells (IECs), histone deacetylase 3 (HDAC3) integrates microbiota-derived signals to control intestinal homeostasis. We investigated whether HDAC3 in IECs regulates metabolism and the development of obesity in mice.

View Article and Find Full Text PDF

Mucosal tissues are constantly in direct contact with diverse beneficial and pathogenic microbes, highlighting the need for orchestrating complex microbial signals to sustain effective host defense. Here, we show an essential role for intestinal epithelial cell expression of histone deacetylase 3 (HDAC3) in responding to pathogenic microbes and activating protective innate immunity. Mice lacking HDAC3 in intestinal epithelial cells were more susceptible to Citrobacter rodentium when under tonic stimulation by the commensal microbiota.

View Article and Find Full Text PDF

The coevolution of mammalian hosts and their commensal microbiota has led to the development of complex symbiotic relationships between resident microbes and mammalian cells. Epigenomic modifications enable host cells to alter gene expression without modifying the genetic code, and therefore represent potent mechanisms by which mammalian cells can transcriptionally respond, transiently or stably, to environmental cues. Advances in genome-wide approaches are accelerating our appreciation of microbial influences on host physiology, and increasing evidence highlights that epigenomics represent a level of regulation by which the host integrates and responds to microbial signals.

View Article and Find Full Text PDF