There is increasing evidence that the T-cell protein, Lck, is involved in the pathogenesis of chronic lymphocytic leukemia (CLL) as well as other leukemias and lymphomas. We previously discovered that Lck binds to domain 5 of inositol 1,4,5-trisphosphate receptors (IPR) to regulate Ca homeostasis. Using bioinformatics, we targeted a region within domain 5 of IPR-1 predicted to facilitate protein-protein interactions (PPIs).
View Article and Find Full Text PDFThere is increasing evidence that the T-cell protein, Lck, is involved in the pathogenesis of chronic lymphocytic leukemia (CLL) as well as other leukemias and lymphomas. We previously discovered that Lck binds to domain 5 of inositol 1,4,5-trisphosphate receptors (IP3R) to regulate Ca2+ homeostasis. Using bioinformatics, we targeted a region within domain 5 of IP3R-1 predicted to facilitate protein-protein interactions (PPIs).
View Article and Find Full Text PDFKey contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin.
View Article and Find Full Text PDFThermal degradation of insulin complicates its delivery and use. Previous efforts to engineer ultra-stable analogs were confounded by prolonged cellular signaling , of unclear safety and complicating mealtime therapy. We therefore sought an ultra-stable analog whose potency and duration of action on intravenous bolus injection in diabetic rats are indistinguishable from wild-type (WT) insulin.
View Article and Find Full Text PDFOur previous GWAS using samples from the NSABP P-1 and P-2 selective estrogen receptor modulator (SERM) breast cancer prevention trials identified SNPs in and near that were associated with breast cancer risk during SERM chemoprevention. We have now performed Next Generation DNA sequencing to identify additional SNPs that might contribute to breast cancer risk and to extend our observation that SNPs located hundreds of bp from estrogen response elements (EREs) can alter estrogen receptor alpha (ERα) binding in a SERM-dependent fashion. Our study utilized a nested case-control cohort selected from patients enrolled in the original GWAS, with 199 cases who developed breast cancer during SERM therapy and 201 matched controls who did not.
View Article and Find Full Text PDFProthrombin (FII) is activated to α-thrombin (IIa) by prothrombinase. Prothrombinase is composed of a catalytic subunit, factor Xa (fXa), and a regulatory subunit, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. We constructed, expressed, and purified several mutated recombinant FII (rFII) molecules within the previously determined fVa-dependent binding site for fXa (amino acid region 473-487 of FII).
View Article and Find Full Text PDFRecent high resolution structures of several pentameric ligand-gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron-electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand-gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand-gated ion channel, which is activated by protons.
View Article and Find Full Text PDFThe pathogenesis of prion diseases is associated with the conformational conversion of normal, predominantly α-helical prion protein (PrP(C)) into a pathogenic form that is enriched with β-sheets (PrP(Sc)). Several PrP(C) crystal structures have revealed β1-mediated intermolecular sheets, suggesting that the β1 strand may contribute to a possible initiation site for β-sheet-mediated PrP(Sc) propagation. This β1 strand contains the polymorphic residue 129 that influences disease susceptibility and phenotype.
View Article and Find Full Text PDFPERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase.
View Article and Find Full Text PDFBACKGROUND- The primary role of natriuretic peptide receptor-3 (NPR3) or NPR-C is in the clearance of natriuretic peptides that play an important role in modulating intravascular volume and vascular tone. Genetic variation in NPR3 has been associated with variation in blood pressure and obesity. Despite the importance of NPR3, sequence variation in the gene has not been addressed using DNA from different ethnic populations.
View Article and Find Full Text PDFFactor XIII (FXIII) consists of catalytic A subunits (FXIII-A) and carrier B subunits. Congenital FXIII deficiency is a severe bleeding disorder. We previously identified an R260C missense mutation and an exon-IV deletion in Japanese patients' F13A genes.
View Article and Find Full Text PDFThe "methionine cycle" plays a critical role in the regulation of concentrations of (S)-adenosylmethionine (AdoMet), the major biological methyl donor. We set out to study sequence variation in genes encoding the enzyme that synthesizes AdoMet in liver, methionine adenosyltransferase 1A (MAT1A) and the major hepatic AdoMet using enzyme, glycine N-methyltransferase (GNMT), as well as functional implications of that variation. We resequenced MAT1A and GNMT using DNA from 288 subjects of three ethnicities, followed by functional genomic and genotype-phenotype correlation studies performed with 268 hepatic biopsy samples.
View Article and Find Full Text PDFIntroduction: Coagulation factor XIII (FXIII) is a fibrin-stabilizing factor, which contributes to hemostasis, wound healing, and maintenance of pregnancy. Accordingly, patients with congenital FXIII deficiency manifest a life-long bleeding tendency, abnormal wound healing and recurrent miscarriage. In order to understand the molecular mechanisms of congenital FXIII deficiency, genetic analysis and molecular modeling were carried out in a Japanese male neonate with severe FXIII deficiency.
View Article and Find Full Text PDFThe study of synthetic peptides corresponding to discrete regions of proteins has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, in many instances, small peptides are prone to rapid degradation or aggregation and may lack the conformation required to mimic the functional motifs of the protein.
View Article and Find Full Text PDFNicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide, pyridines, and other analogues using S-adenosyl-l-methionine as donor. NNMT plays a significant role in the regulation of metabolic pathways and is expressed at markedly high levels in several kinds of cancers, presenting it as a potential molecular target for cancer therapy. We have determined the crystal structure of human NNMT as a ternary complex bound to both the demethylated donor S-adenosyl-l-homocysteine and the acceptor substrate nicotinamide, to 2.
View Article and Find Full Text PDFMethionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine, the major biological methyl donor. MAT1A and MAT2A encode two distinct MAT isoforms in mammals. MAT2A is expressed in nonhepatic tissues, whereas MAT1A is expressed in the liver.
View Article and Find Full Text PDFMembrane metallo-endopeptidase (MME), also known as neutral endopeptidase 24.11 (EC 3.4.
View Article and Find Full Text PDFA novel human thiopurine S-methyltransferase (TPMT) variant allele, (319 T>G, 107Tyr>Asp, *27), was identified in a Thai renal transplantation recipient with reduced erythrocyte TPMT activity. The TPMT*27 variant allozyme showed a striking decrease in both immunoreactive protein level and enzyme activity after transient expression in a mammalian cell line. We set out to explore the mechanism(s) responsible for decreased expression of this novel variant of an important drug-metabolizing enzyme.
View Article and Find Full Text PDFA conformational transition of normal cellular prion protein (PrP(C)) to its pathogenic form (PrP(Sc)) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild-type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129.
View Article and Find Full Text PDFBackground: 5'-Nucleotidases play a critical role in nucleotide pool balance and in the metabolism of nucleoside analogs such as gemcitabine and cytosine arabinoside (AraC). We previously performed an expression array association study with gemcitabine and AraC cytotoxicity using 197 human lymphoblastoid cell lines. One gene that was significantly associated with gemcitabine cytotoxicity was a nucleotidase family member, NT5C3.
View Article and Find Full Text PDFBcl-2 is the founding member of a large family of apoptosis regulating proteins. Bcl-2 is a prime target for novel therapeutics because it is elevated in many forms of cancer and contributes to cancer progression and therapy resistance based on its ability to inhibit apoptosis. Bcl-2 interacts with proapoptotic members of the Bcl-2 family to inhibit apoptosis and small molecules that disrupt this interaction have already entered the cancer therapy arena.
View Article and Find Full Text PDFFructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.
View Article and Find Full Text PDFGemcitabine and other cytidine antimetabolites require metabolic activation by phosphorylation. Deoxycytidine kinase (DCK) and cytidine monophosphate kinase (CMPK) catalyze these reactions. We have applied a genotype-to-phenotype strategy to study DCK and CMPK pharmacogenomics.
View Article and Find Full Text PDFThiopurine S-methyltransferase (TPMT) modulates the cytotoxic effects of thiopurine prodrugs such as 6-mercaptopurine by methylating them in a reaction using S-adenosyl- l-methionine as the donor. Patients with TPMT variant allozymes exhibit diminished levels of protein and/or enzyme activity and are at risk for thiopurine drug-induced toxicity. We have determined two crystal structures of murine TPMT, as a binary complex with the product S-adenosyl- l-homocysteine and as a ternary complex with S-adenosyl- l-homocysteine and the substrate 6-mercaptopurine, to 1.
View Article and Find Full Text PDF