We report on a direct search for scalar field dark matter using data from LIGO's third observing run. We analyze the coupling of size oscillations of the interferometer's beam splitter and arm test masses that may be caused by scalar field dark matter. Using new efficient search methods to maximize sensitivity for signatures of such oscillations, we set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, which improve upon bounds from previous direct searches by up to four orders of magnitude in a frequency band from 10 to 180 Hz.
View Article and Find Full Text PDFThe general-relativistic phenomenon of spin-induced orbital precession has not yet been observed in strong-field gravity. Gravitational-wave observations of binary black holes (BBHs) are prime candidates, as we expect the astrophysical binary population to contain precessing binaries. Imprints of precession have been investigated in several signals, but no definitive identification of orbital precession has been reported in any of the 84 BBH observations so far by the Advanced LIGO and Virgo detectors.
View Article and Find Full Text PDFThe nature of dark matter remains unknown to date, although several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we describe a direct search for scalar field dark matter using a gravitational-wave detector, which operates beyond the quantum shot-noise limit.
View Article and Find Full Text PDFInferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current approaches to parameter estimation for these detectors require computationally expensive algorithms. Therefore, there is a pressing need for new, fast, and accurate Bayesian inference techniques.
View Article and Find Full Text PDFCompact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network.
View Article and Find Full Text PDF