Publications by authors named "Vivien Parmentier"

Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST's Mid-Infrared Instrument.

View Article and Find Full Text PDF
Article Synopsis
  • Transmission spectroscopy has been an essential method for studying exoplanet atmospheres, but recent studies question the assumption that the atmosphere is uniform, particularly for heated gas giants like WASP-39 b.
  • Using the James Webb Space Telescope, researchers detected differences in the morning and evening transmission spectra of WASP-39 b, finding that the evening spectra had significantly larger transit depths compared to the morning ones.
  • The findings suggest that the evening terminator is hotter and possibly clearer than the morning terminator, leading to implications about atmospheric circulation and cloud formation on the exoplanet.
View Article and Find Full Text PDF

Interactions between exoplanetary atmospheres and internal properties have long been proposed to be drivers of the inflation mechanisms of gaseous planets and apparent atmospheric chemical disequilibrium conditions. However, transmission spectra of exoplanets have been limited in their ability to observationally confirm these theories owing to the limited wavelength coverage of the Hubble Space Telescope (HST) and inferences of single molecules, mostly HO (ref. ).

View Article and Find Full Text PDF

The recent inference of sulfur dioxide (SO) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations suggests that photochemistry is a key process in high-temperature exoplanet atmospheres. This is because of the low (<1 ppb) abundance of SO under thermochemical equilibrium compared with that produced from the photochemistry of HO and HS (1-10 ppm). However, the SO inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.

View Article and Find Full Text PDF

The abundances of main carbon- and oxygen-bearing gases in the atmospheres of giant exoplanets provide insights into atmospheric chemistry and planet formation processes. Thermochemistry suggests that methane (CH) should be the dominant carbon-bearing species below about 1,000 K over a range of plausible atmospheric compositions; this is the case for the solar system planets and has been confirmed in the atmospheres of brown dwarfs and self-luminous, directly imaged exoplanets. However, CH has not yet been definitively detected with space-based spectroscopy in the atmosphere of a transiting exoplanet, but a few detections have been made with ground-based, high-resolution transit spectroscopy including a tentative detection for WASP-80b (ref.

View Article and Find Full Text PDF

Close-in giant exoplanets with temperatures greater than 2,000 K ('ultra-hot Jupiters') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on the JWST.

View Article and Find Full Text PDF

There are no planets intermediate in size between Earth and Neptune in our Solar System, yet these objects are found around a substantial fraction of other stars. Population statistics show that close-in planets in this size range bifurcate into two classes on the basis of their radii. It is proposed that the group with larger radii (referred to as 'sub-Neptunes') is distinguished by having hydrogen-dominated atmospheres that are a few percent of the total mass of the planets.

View Article and Find Full Text PDF
Article Synopsis
  • Photochemistry plays a critical role in regulating the composition and stability of planetary atmospheres, but clear photochemical products have not been detected in exoplanets until recently.* -
  • The James Webb Space Telescope (JWST) detected sulfur dioxide (SO) in the atmosphere of the exoplanet WASP-39b, suggesting photochemical processes create SO in this gas giant's atmosphere.* -
  • The presence of SO, linked to the oxidation of hydrogen sulfide, indicates WASP-39b has high metallicity (about 10 times that of the sun), and its spectral features could help understand more about similar exoplanets.*
View Article and Find Full Text PDF
Article Synopsis
  • Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres helps to understand their chemical processes and formation history.
  • The James Webb Space Telescope (JWST) allows for advanced observations of exoplanets, notably WASP-39b, providing insights through time-series data with high precision in a new wavelength range.
  • Findings include the detection of water vapor in the atmosphere with a high metallicity (1-100 times that of the Sun) and a low C/O ratio, suggesting the potential for significant solid material accretion during formation or chemical disequilibrium in the atmosphere.
View Article and Find Full Text PDF

The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST.

View Article and Find Full Text PDF

Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref.

View Article and Find Full Text PDF

Measurements of the atmospheric carbon (C) and oxygen (O) relative to hydrogen (H) in hot Jupiters (relative to their host stars) provide insight into their formation location and subsequent orbital migration. Hot Jupiters that form beyond the major volatile (HO/CO/CO) ice lines and subsequently migrate post disk-dissipation are predicted have atmospheric carbon-to-oxygen ratios (C/O) near 1 and subsolar metallicities, whereas planets that migrate through the disk before dissipation are predicted to be heavily polluted by infalling O-rich icy planetesimals, resulting in C/O < 0.5 and super-solar metallicities.

View Article and Find Full Text PDF