This study reports the experimental demonstration of the first waveguide-integrated SiGe modulator using a PIN diode operating in a wide spectral range of the mid-infrared region. At the wavelength of 10 µm, an extinction ratio up to 10 dB is obtained in injection regime and 3.2 dB in depletion regime.
View Article and Find Full Text PDFOn-chip pump rejection filters are key building blocks in a variety of applications exploiting nonlinear phenomena, including Raman spectroscopy and photon-pair generation. Ultrahigh rejection has been achieved in the silicon technology by non-coherent cascading of modal-engineered Bragg filters. However, this concept cannot be directly applied to silicon nitride waveguides as the comparatively lower index contrast hampers the suppression of residual light propagating in the orthogonal polarization, limiting the achievable rejection.
View Article and Find Full Text PDFThis article presents low-loss mid-infrared waveguides fabricated on a Ge-rich SiGe strain-relaxed buffer grown on an industrial-scale 200 mm wafer, with propagation losses below 0.5 dB/cm for 5-7 µm wavelengths and below 5 dB/cm up to 11 µm. Investigation reveals free-carrier absorption as the primary loss factor for 5-6.
View Article and Find Full Text PDFSilicon nitride (SiN) waveguides become an appealing choice to realize complex photonic integrated circuits for applications in telecom/datacom transceivers, sensing, and quantum information sciences. However, compared to high-index-contrast silicon-on-insulator platform, the index difference between the SiN waveguide core and its claddings is more moderate, which adversely affects the development of vertical grating-coupled optical interfaces. SiN grating couplers suffer from the reduced strength, therefore it is more challenging to radiate all the waveguide power out of the grating within a beam size that is comparable to the mode field diameter of standard optical fibers.
View Article and Find Full Text PDFSpectroscopy in the mid-infrared (mid-IR) wavelength range is a key technique to detect and identify chemical and biological substances. In this context, the development of integrated optics systems paves the way for the realization of compact and cost-effective sensing systems. Among the required devices, an integrated electro-optical modulator (EOM) is a key element for advanced sensing circuits exploiting dual comb spectroscopy.
View Article and Find Full Text PDFMetalenses are attracting a large interest for the implementation of complex optical functionalities in planar and compact devices. However, chromatic and off-axis aberrations remain standing challenges. Here, we experimentally investigate the broadband behavior of metalenses based on quadratic phase profiles.
View Article and Find Full Text PDFIntegrated mid-infrared micro-spectrometers have a great potential for applications in environmental monitoring and space exploration. Silicon-on-insulator (SOI) is a promising platform to tackle this integration challenge, owing to its unique capability for large volume and low-cost production of ultra-compact photonic circuits. However, the use of SOI in the mid-infrared is restricted by the strong absorption of the buried oxide layer for wavelengths beyond 4 µm.
View Article and Find Full Text PDFIn the past few years, we have witnessed increased interest in the use of 2D materials to produce hybrid photonic nonlinear waveguides. Although graphene has attracted most of the attention, other families of 2D materials such as transition metal dichalcogenides have also shown promising nonlinear performance. In this work, we propose a strategy for designing silicon nitride waveguiding structures with embedded MoS for nonlinear applications.
View Article and Find Full Text PDFSubwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach.
View Article and Find Full Text PDFThe heterogeneous integration of low-dimensional materials with photonic waveguides has spurred wide research interest. Here, we report on the experimental investigation and the numerical modeling of enhanced nonlinear pulse broadening in silicon nitride waveguides with the heterogeneous integration of few-layer WS. After transferring a few-layer WS flake of ∼14.
View Article and Find Full Text PDFIntegrated microspectrometers implemented in silicon photonic chips have gathered a great interest for diverse applications such as biological analysis, environmental monitoring, and remote sensing. These applications often demand high spectral resolution, broad operational bandwidth, and large optical throughput. Spatial heterodyne Fourier-transform (SHFT) spectrometers have been proposed to overcome the limited optical throughput of dispersive and speckle-based on-chip spectrometers.
View Article and Find Full Text PDFWe theoretically explore the potential of SiN on SiO waveguide platform toward a wideband spectroscopic detection around the optical wavelength of 2 μm. The design of SiN on SiO waveguide architectures consisting of a SiN slot waveguide for a wideband on-chip spectroscopic sensing around 2 μm, and a SiN multi-mode interferometer (MMI)-based coupler for light coupling from classical strip waveguide into the identified SiN slot waveguides over a wide spectral range are investigated. We found that a SiN on SiO slot waveguide structure can be designed for using as optical interaction part over a spectral range of interest, and the MMI structure can be used to enable broadband optical coupling from a strip to the slot waveguide for wideband multi-gas on-chip spectroscopic sensing.
View Article and Find Full Text PDFSilicon photonics on-chip spectrometers are finding important applications in medical diagnostics, pollution monitoring, and astrophysics. Spatial heterodyne Fourier transform spectrometers (SHFTSs) provide a particularly interesting architecture with a powerful passive error correction capability and high spectral resolution. Despite having an intrinsically large optical throughput (étendue, also referred to as Jacquinot's advantage), state-of-the-art silicon SHFTSs have not exploited this advantage yet.
View Article and Find Full Text PDFSurface grating couplers are fundamental building blocks for coupling the light between optical fibers and integrated photonic devices. However, the operational bandwidth of conventional grating couplers is intrinsically limited by their wavelength-dependent radiation angle. The few dual-band grating couplers that have been experimentally demonstrated exhibit low coupling efficiencies and rely on complex fabrication processes.
View Article and Find Full Text PDFMidinfrared spectroscopy is a universal way to identify chemical and biological substances. Indeed, when interacting with a light beam, most molecules are responsible for absorption at specific wavelengths in the mid-IR spectrum, allowing to detect and quantify small traces of substances. On-chip broadband light sources in the mid-infrared are thus of significant interest for compact sensing devices.
View Article and Find Full Text PDFA polarization tolerant optical receiver is a key building block for the development of wavelength division multiplexing based high-speed optical data links. However, the design of a polarization independent demultiplexer is not trivial. In this Letter, we report on the realization of a polarization tolerant arrayed waveguide grating (AWG) on a 300-mm silicon nitride (SiN) photonic platform.
View Article and Find Full Text PDFWaveguide Bragg grating filters with narrow bandwidths and high optical rejections are key functions for several advanced silicon photonics circuits. Here, we propose and demonstrate a new, to the best of our knowledge, Bragg grating geometry that provides a narrowband and high rejection response. It combines the advantages of subwavelength and modal engineering.
View Article and Find Full Text PDFBrillouin optomechanics has recently emerged as a promising tool to implement new functionalities in silicon photonics, including high-performance opto-RF processing and nonreciprocal light propagation. One key challenge in this field is to maximize the photon-phonon interaction and the phonon lifetime, simultaneously. Here, we propose a new, to the best of our knowledge, strategy that exploits subwavelength engineering of the photonic and phononic modes in silicon membrane waveguides to maximize the Brillouin gain.
View Article and Find Full Text PDFThe mid-infrared (mid-IR) wavelength range hosts unique vibrational and rotational resonances of a broad variety of substances that can be used to unambiguously detect the molecular composition in a non-intrusive way. Mid-IR photonic-integrated circuits (PICs) are thus expected to have a major impact in many applications. Still, new challenges are posed by the large spectral width required to simultaneously identify many substances using the same photonic circuit.
View Article and Find Full Text PDFWe demonstrated a class of highly nonlinear hybrid waveguide structures based on infiltration of AsS chalcogenide glass into silicon slot waveguides. The nonlinear properties of the hybrid waveguides were precisely quantified via a bidirectional top-hat D-scan method, enabling a direct comparison between properties measured using different device geometries. We experimentally demonstrate hybrid AsS-Si slot waveguides with a two-photon absorption (TPA) figure of merit exceeding 2 at near infrared wavelengths.
View Article and Find Full Text PDFMiniaturized optical spectrometers providing broadband operation and fine resolution have an immense potential for applications in remote sensing, non-invasive medical diagnostics and astronomy. Indeed, optical spectrometers working in the mid-infrared spectral range have garnered a great interest for their singular capability to monitor the main absorption fingerprints of a wide range of chemical and biological substances. Fourier-transform spectrometers (FTS) are a particularly interesting solution for the on-chip integration due to their superior robustness against fabrication imperfections.
View Article and Find Full Text PDF