Background: As genome sequencing becomes better integrated into scientific research, government policy, and personalized medicine, the primary challenge for researchers is shifting from generating raw data to analyzing these vast datasets. Although much work has been done to reduce compute times using various configurations of traditional CPU computing infrastructures, Graphics Processing Units (GPUs) offer opportunities to accelerate genomic workflows by orders of magnitude. Here we benchmark one GPU-accelerated software suite called NVIDIA Parabricks on Amazon Web Services (AWS), Google Cloud Platform (GCP), and an NVIDIA DGX cluster.
View Article and Find Full Text PDFThe biomedical research community is investing heavily in biomedical cloud platforms. Cloud computing holds great promise for addressing challenges with big data and ensuring reproducibility in biology. However, despite their advantages, cloud platforms in and of themselves do not automatically support FAIRness.
View Article and Find Full Text PDFAs more digital resources are produced by the research community, it is becoming increasingly important to harmonize and organize them for synergistic utilization. The findable, accessible, interoperable, and reusable (FAIR) guiding principles have prompted many stakeholders to consider strategies for tackling this challenge. The FAIRshake toolkit was developed to enable the establishment of community-driven FAIR metrics and rubrics paired with manual and automated FAIR assessments.
View Article and Find Full Text PDFThe thesis presented here is that biomedical research is based on the trusted exchange of services. That exchange would be conducted more efficiently if the trusted software platforms to exchange those services, if they exist, were more integrated. While simpler and narrower in scope than the services governing biomedical research, comparison to existing internet-based platforms, like Airbnb, can be informative.
View Article and Find Full Text PDFHere we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences--the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The 'environmental packages' apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists.
View Article and Find Full Text PDFThe Human Microbiome Project (HMP), funded as an initiative of the NIH Roadmap for Biomedical Research (http://nihroadmap.nih.gov), is a multi-component community resource.
View Article and Find Full Text PDFThe Celera Discovery System (CDS) is a web-accessible research workbench for mining genomic and related biological information. Users have access to the human and mouse genome sequences with annotation presented in summary form in BioMolecule Reports for genes, transcripts and proteins. Over 40 additional databases are available, including sequence, mapping, mutation, genetic variation, mRNA expression, protein structure, motif and classification data.
View Article and Find Full Text PDF