Publications by authors named "Vivien Becker"

The tumor microenvironment stimulates the angiogenic activity of endothelial cells (ECs) to facilitate tumor vascularization, growth, and metastasis. The involvement of microRNA-186-5p (miR-186) in regulating the aberrant activity of tumor-associated ECs has so far not been clarified. In the present study, we demonstrated that miR-186 is significantly downregulated in ECs microdissected from human non-small cell lung cancer (NSCLC) tissues compared with matched non-malignant lung tissues.

View Article and Find Full Text PDF

Brassinin, a phytoalexin derived from cruciferous vegetables, has been reported to exhibit anti-cancer activity in multiple cancer types. However, its effects on triple-negative breast cancer (TNBC) development and the underlying mechanisms have not been elucidated so far. In this study, we demonstrated in vitro that brassinin preferentially reduces the viability of endothelial cells (ECs) when compared to other cell types of the tumor microenvironment, including TNBC cells, pericytes, and fibroblasts.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) expressed in endothelial cells (ECs) are powerful regulators of angiogenesis, which is essential for tumor growth and metastasis. Here, we demonstrated that miR-22 is preferentially and highly expressed in ECs, while its endothelial level is significantly downregulated in human non-small cell lung cancer (NSCLC) tissues when compared to matched nontumor lung tissues. This reduction of endothelial miR-22 is possibly induced by NSCLC cell-secreted interleukin-1β and subsequently activated transcription factor nuclear factor-κB.

View Article and Find Full Text PDF

Angiogenesis crucially contributes to various diseases, such as cancer and diabetic retinopathy. Hence, anti-angiogenic therapy is considered as a powerful strategy against these diseases. Previous studies reported that the acyclic monoterpene linalool exhibits anticancer, anti-inflammatory and anti-oxidative activity.

View Article and Find Full Text PDF

Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels.

View Article and Find Full Text PDF

Protein kinase CK2 is a crucial regulator of endothelial cell proliferation, migration and sprouting during angiogenesis. However, it is still unknown whether this kinase additionally affects the angiogenic activity of other vessel-associated cells. In this study, we investigated the effect of CK2 inhibition on primary human pericytes.

View Article and Find Full Text PDF

Background And Purpose: The development of endometriotic lesions is crucially dependent on the formation of new blood vessels. In the present study, we analysed whether this process is regulated by erythropoietin-producing hepatoma receptor B4 (EphB4) signalling.

Experimental Approach: We first assessed the anti-angiogenic action of the EphB4 inhibitor NVP-BHG712 in different in vitro angiogenesis assays.

View Article and Find Full Text PDF

Pancreatic islets are highly vascularized endocrine units. Accordingly, their adequate revascularization is of major importance for successful islet transplantation. The proteoglycan, nerve/glial antigen 2 (NG2) expressed in pericytes is a crucial regulator of angiogenesis.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Calligonum comosum is a desert plant that is applied in traditional folkloric medicine for the treatment of abnormally heavy or prolonged menstruation and menstrual cramps. Moreover, it has been suggested for the treatment of infertility-causing conditions. Its bioactive chemical constituents inhibit multiple processes, such as angiogenesis, inflammation and invasive tissue growth, which may be beneficial in the therapy of endometriosis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) crucially modulate fundamental biologic processes such as angiogenesis. In the present study, we focused on the molecular function of miRNA-370-3p (miR-370) in regulating the angiogenic activity of endothelial cells (ECs). Transfection with miR-370 mimic (miR-370m) significantly inhibited the sprouting of human dermal microvascular EC (HDMEC) and HUVEC spheroids and mouse aortic rings, whereas miR-370 inhibitor (miR-370i) promoted sprout formation.

View Article and Find Full Text PDF