Plants with innate disease and pest resistance can contribute to more sustainable agriculture. Natural defence compounds produced by plants have the potential to provide a general protective effect against pathogens and pests, but they are not a primary target in resistance breeding. Here, we identified a wild relative of potato, , that provides us with unique insight in the role of glycoalkaloids in plant immunity.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) in crop plants remain largely unexplored. Here, we provide a protocol for identifying PPIs in potato (Solanum tuberosum) using TurboID-mediated proximity labeling. We transiently expressed constructs for a nucleus-located transcription factor and a plasma membrane-localized receptor-like kinase fused to TurboID to identify PPIs in potato leaves.
View Article and Find Full Text PDFPlant cell surface pattern recognition receptors (PRRs) and intracellular immune receptors cooperate to provide immunity to microbial infection. Both receptor families have coevolved at an accelerated rate, but the evolution and diversification of PRRs is poorly understood. We have isolated potato surface receptor Pep-13 receptor unit (PERU) that senses Pep-13, a conserved immunogenic peptide pattern from plant pathogenic species.
View Article and Find Full Text PDFThe potato's most devastating disease is late blight, which is caused by Phytophthora infestans. Whereas various resistance (R) genes are known, most are typically defeated by this fast-evolving oomycete pathogen. However, the broad-spectrum and durable R8 is a vital gene resource for potato resistance breeding.
View Article and Find Full Text PDFPattern-triggered immunity (PTI) in plants is mediated by cell surface-localized pattern recognition receptors (PRRs) upon perception of microbe-associated molecular pattern (MAMPs). MAMPs are conserved molecules across microbe species, or even kingdoms, and PRRs can confer broad-spectrum disease resistance. Pep-13/25 are well-characterized MAMPs in species, which are renowned devastating oomycete pathogens of potato and other plants, and for which genetic resistance is highly wanted.
View Article and Find Full Text PDFEarly blight of potato is caused by the fungal pathogen and is an increasing problem worldwide. The primary strategy to control the disease is applying fungicides such as succinate dehydrogenase inhibitors (SDHI). SDHI-resistant strains, showing reduced sensitivity to treatments, appeared in Germany in 2013, shortly after the introduction of SDHIs.
View Article and Find Full Text PDFSpecies of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors.
View Article and Find Full Text PDFEarly blight is a disease of potato that is caused by species, notably . The disease is usually controlled with fungicides. However, is developing resistance against fungicides, and potato cultivars with genetic resistance to early blight are currently not available.
View Article and Find Full Text PDFThe identification, understanding, and deployment of immune receptors are crucial to achieve high-level and durable resistance for crops against pathogens. In potato, many R genes have been identified using map-based cloning strategies. However, this is a challenging and laborious task that involves the development of a high number of molecular markers for the initial mapping, and the screening of thousands of plants for fine mapping.
View Article and Find Full Text PDFLate blight in potato, caused by the oomycete Phytophthora infestans, is a devastating disease that significantly impacts potato production. For a proper understanding of disease development, it is important to understand the interaction between plant and pathogen at a molecular level. Like other pathogens, P.
View Article and Find Full Text PDFKnowledge of the evolutionary processes which govern pathogen recognition is critical to understanding durable disease resistance. We determined how Phytophthora infestans effector PiAVR2 is recognised by evolutionarily distinct resistance proteins R2 and Rpi-mcq1. We employed yeast two-hybrid, co-immunoprecipitation, virus-induced gene silencing, transient overexpression, and phosphatase activity assays to investigate the contributions of BSL phosphatases to R2- and Rpi-mcq1-mediated hypersensitive response (R2 HR and Rpi-mcq1 HR, respectively).
View Article and Find Full Text PDFLate blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P.
View Article and Find Full Text PDFThe plant apoplast is a harsh environment in which hydrolytic enzymes, especially proteases, accumulate during pathogen infection. However, the defense functions of most apoplastic proteases remain largely elusive. We show here that a newly identified small cysteine-rich secreted protein PC2 from the potato late blight pathogen Phytophthora infestans induces immunity in Solanum plants only after cleavage by plant apoplastic subtilisin-like proteases, such as tomato P69B.
View Article and Find Full Text PDFPotato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence or Avr) genes from P.
View Article and Find Full Text PDFPlants deploy cell surface receptors known as pattern-recognition receptors (PRRs) that recognize non-self molecules from pathogens and microbes to defend against invaders. PRRs typically recognize microbe-associated molecular patterns (MAMPs) that are usually widely conserved, some even across kingdoms. Here, we report an oomycete-specific family of small secreted cysteine-rich (SCR) proteins that displays divergent patterns of sequence variation in the Irish potato famine pathogen A subclass that includes the conserved effector PcF from activates immunity in a wide range of plant species.
View Article and Find Full Text PDFThe identification of immune receptors in crop plants is time-consuming but important for disease control. Previously, resistance gene enrichment sequencing (RenSeq) was developed to accelerate mapping of nucleotide-binding domain and leucine-rich repeat containing (NLR) genes. However, resistances mediated by pattern recognition receptors (PRRs) remain less utilized.
View Article and Find Full Text PDFIn plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear.
View Article and Find Full Text PDFOomycetes such as the potato blight pathogen Phytophthora infestans deliver RXLR effectors into plant cells to manipulate host processes and promote disease. Knowledge of where they localize inside host cells is important in understanding their function. Fifty-two P.
View Article and Find Full Text PDFBackground: Outbreaks caused by asexual lineages of fungal and oomycete pathogens are a continuing threat to crops, wild animals and natural ecosystems (Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ, Nature 484:186-194, 2012; Kupferschmidt K, Science 337:636-638, 2012). However, the mechanisms underlying genome evolution and phenotypic plasticity in asexual eukaryotic microbes remain poorly understood (Seidl MF, Thomma BP, BioEssays 36:335-345, 2014). Ever since the 19th century Irish famine, the oomycete Phytophthora infestans has caused recurrent outbreaks on potato and tomato crops that have been primarily caused by the successive rise and migration of pandemic asexual lineages (Goodwin SB, Cohen BA, Fry WE, Proc Natl Acad Sci USA 91:11591-11595, 1994; Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S, PLoS Pathog 10:e1004028, 2014; Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al.
View Article and Find Full Text PDFThe ELICITIN RESPONSE protein (ELR) from Solanum microdontum can recognize INF1 elicitin of Phytophthora infestans and trigger defense responses. ELR is a receptor-like protein (RLP) that lacks a cytoplasmic signaling domain and is anticipated to require interaction with a signaling-competent receptor-like kinase. SUPPRESSOR OF BIR1-1 (SOBIR1) has been proposed as a general interactor for RLPs involved in immunity and, as such, is a potential interactor for ELR.
View Article and Find Full Text PDFThe Alternaria genus consists of saprophytic fungi as well as plant-pathogenic species that have significant economic impact. To date, the genomes of multiple Alternaria species have been sequenced. These studies have yielded valuable data for molecular studies on Alternaria fungi.
View Article and Find Full Text PDFblight is an important foliage disease caused by . The enzyme Succinate dehydrogenase (SDH) is a potential drug target because of its role in tricarboxylic acid cycle. Hence targeting SDH enzyme could be efficient tool to design novel fungicides against .
View Article and Find Full Text PDFIn modern resistance breeding, effectors have emerged as tools for accelerating and improving the identification of immune receptors. Effector-assisted breeding was pioneered for identifying resistance genes (R genes) against Phytophthora infestans in potato (Solanum tuberosum). Here we show that effectoromics approaches are also well suitable for identifying pathogen recognition receptors (PRRs) that recognize apoplastic effectors.
View Article and Find Full Text PDF