Mol Ther Methods Clin Dev
June 2019
Adeno-associated virus (AAV) vectors are currently among the most commonly applied for gene therapy approaches. The evaluation of vectors during clinical development requires the production of considerable amounts of highly pure and potent vectors. Here, we set up a scalable process for AAV production, using orbitally shaken bioreactors and a fully characterized suspension-adapted cell line, HEKExpress.
View Article and Find Full Text PDFPurpose: Stem cells and their derivatives have emerged as a promising tool for cell-based drug delivery because of (a) their unique ability to differentiate into various somatic cell types, (b) the virtually unlimited donor source for transplantation, and (c) the advantage of being amenable to a wide spectrum of genetic manipulations. Previously, adenosine-releasing embryonic stem (ES) cells have been generated by disruption of both alleles of adenosine kinase (Adk-/-). Lack of ADK did not compromise the cells' differentiation potential into embryoid bodies or glial precursor cells.
View Article and Find Full Text PDFAdenosine is an important inhibitory modulator of brain activity. In a previous ex vivo gene therapy approach, local release of adenosine by encapsulated fibroblasts implanted into the vicinity of an epileptic focus, was sufficient to provide transient protection from seizures (Huber, A., Padrun, V.
View Article and Find Full Text PDFPurpose: Intraventricular cellular delivery of adenosine was recently shown to be transiently efficient in the suppression of seizure activity in the rat kindling model of epilepsy. We tested whether the suppression of seizures by adenosine-releasing grafts was independent of seizure frequency.
Methods: Adenosine-releasing cells were encapsulated and grafted into the lateral brain ventricle of rats kindled in the hippocampus.