We previously characterized the inhibitory activity of human salivary α-amylase (HSA) and Callosobruchus maculatus intestinal α-amylases by the plant lipid transfer protein from Vigna unguiculata ( Vu-LTP). Herein, we further study this inhibitory activity. First by an analysis of protein α-amylase inhibitors complexed with α-amylase, we find that positively charged amino acids of inhibitors interact with the active site of α-amylases and we know that Vu-LTP is rich in positively charged amino acid residues.
View Article and Find Full Text PDFIncreasing energy demand has spurred interest in the use of biofuels. Jatropha curcas (physic nut), an inedible oilseed, is a potential source of bioenergy. The seeds, however, contain allergens such as Jat c 1, a 2S albumin that can induce hypersensitivity reactions in humans and result in allergic diseases.
View Article and Find Full Text PDFJ Agric Food Chem
May 2011
The major Ricinus communis allergens are the 2S albumins, Ric c 1 and Ric c 3. These proteins contain a trypsin/α-amylase inhibitor family domain, suggesting that they have a role in insect resistance. In this study, we verified that Ric c 1 and Ric c 3 inhibited the α-amylase activity of Callosobruchus maculatus, Zabrotes subfasciatus, and Tenebrio molitor (TMA) larvae as well as mammalian α-amylase.
View Article and Find Full Text PDFBackground: Hematophagous insects digest large amounts of host hemoglobin and release heme inside their guts. In Rhodnius prolixus, hemoglobin-derived heme is detoxified by biomineralization, forming hemozoin (Hz). Recently, the involvement of the R.
View Article and Find Full Text PDF