Background: DIRs are mysterious protein that have the ability to scavenge free radicals, which, are highly reactive with molecules in their vicinity. What is even more fascinating is that they carry out from these highly unstable species, a selective reaction (i.e.
View Article and Find Full Text PDFA maximization of a direct electron transfer (DET) between redox enzymes and electrodes can be obtained through the oriented immobilization of enzymes onto an electroactive surface. Here, a strategy for obtaining carbon nanotube (CNTs) based electrodes covalently modified with perfectly control-oriented fungal laccases is presented. Modelizations of the laccase-CNT interaction and of electron conduction pathways serve as a guide in choosing grafting positions.
View Article and Find Full Text PDFFungal laccases are robust multicopper oxidoreductases. Perfectly amenable to synthetic evolution, the fungal laccase scaffold is a potential generic for the production of tailored biocatalysts, which, in principle, can be secreted at substantial levels in industrially relevant organisms. In this chapter, the strategy we have developed for the rapid production of hundreds of milligram of laccase variants is detailed.
View Article and Find Full Text PDFA novel series of enediynes possessing pentafluorophenylsulfoxide have been developed. The innovative compounds possess antiproliferative activity against a broad panel of human cancer cells originating from breast, blood, lung, kidney, colon, prostate, pancreas or skin with IC ranging from 0.6 to 3.
View Article and Find Full Text PDF1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a non heme iron(II) containing enzyme that catalyzes the final step of the ethylene biosynthesis in plants. The iron(II) ion is bound in a facial triad composed of two histidines and one aspartate (H177, D179 and H234). Several active site variants were generated to provide alternate binding motifs and the enzymes were reconstituted with copper(II).
View Article and Find Full Text PDFSystems featuring a multi-copper oxidase associated with transition-metal complexes can be used to perform oxidation reactions in mild conditions. Here, a strategy is presented for achieving a controlled orientation of a ruthenium-polypyridyl graft at the surface of a fungal laccase. Laccase variants are engineered with unique surface-accessible lysine residues.
View Article and Find Full Text PDFOxidation reactions are highly important chemical transformations that still require harsh reaction conditions and stoichiometric amounts of chemical oxidants that are often toxic. To circumvent these issues, olefins oxidation is achieved in mild conditions upon irradiation of an aqueous solution of the complex [Ru(bpy)3 ](2+) and the enzyme laccase. Epoxide formation is coupled to the light-driven reduction of O2 by [Ru(bpy)3 ](2+) /laccase system.
View Article and Find Full Text PDFExtremities of proteins are potent sites for functionalization. Carboxy terminus variants of the Trametes sp. strain C30 LAC3 laccase were generated and produced in Saccharomyces cerevisiae.
View Article and Find Full Text PDFThe BamA protein is the key component of the Bam complex, the assembly machinery for outer membrane proteins (OMP) in gram-negative bacteria. We previously demonstrated that BamA recognizes its OMP substrates in a species-specific manner in vitro. In this work, we further studied species specificity in vivo by testing the functioning of BamA homologs of the proteobacteria Neisseria meningitidis, Neisseria gonorrhoeae, Bordetella pertussis, Burkholderia mallei, and Escherichia coli in E.
View Article and Find Full Text PDFWe report on the expression in Aspergillus niger of a laccase gene we used to produce variants in Saccharomyces cerevisiae. Grams of recombinant enzyme can be easily obtained. This highlights the potential of combining this generic laccase sequence to the yeast and fungal expression systems for large-scale productions of variants.
View Article and Find Full Text PDFLaccases (p-diphenol oxidase, EC 1.10.3.
View Article and Find Full Text PDFbeta-Barrel proteins are present in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The central component of their assembly machinery is called Omp85 in bacteria. Omp85 is predicted to consist of an integral membrane domain and an amino-terminal periplasmic extension containing five polypeptide-transport-associated (POTRA) domains.
View Article and Find Full Text PDFThe cell envelope of gram-negative bacteria consists of two membranes, the inner and the outer membrane, that are separated by the periplasm. The outer membrane consists of phospholipids, lipopolysaccharides, integral membrane proteins, and lipoproteins. These components are synthesized in the cytoplasm or at the inner leaflet of the inner membrane and have to be transported across the inner membrane and through the periplasm to assemble eventually in the correct membrane.
View Article and Find Full Text PDFIntegral beta-barrel proteins are found in the outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts. The assembly of these proteins requires a proteinaceous apparatus of which Omp85 is an evolutionary conserved central component. To study its molecular mechanism, we have produced Omp85 from Escherichia coli in inclusion bodies and refolded it in vitro.
View Article and Find Full Text PDFFEMS Microbiol Lett
November 2005
In Gram-negative bacteria, most of the sec-dependent exoproteins are secreted via the type II secretion system (T2SS or secreton). In Pseudomonas aeruginosa, T2SS consists of 12 Xcp proteins (XcpA and XcpP to XcpZ) organized as a multiproteic complex within the envelope. In this study, by a co-purification approach using a His-tagged XcpZ as a bait, XcpY and XcpZ were found associated together to constitute the most stable functional unit so far isolated from the P.
View Article and Find Full Text PDFRes Microbiol
September 2005
In gram-negative bacteria, most signal-peptide-dependent exoproteins are secreted via the type II secretion system (T2SS or secreton). In Pseudomonas aeruginosa, T2SS consists of twelve Xcp proteins (XcpA and XcpP to XcpZ) thought to be organized as a multiproteic complex within the envelope. Although well conserved, T2SS are known to be species-specific, namely for distant organisms, and this characteristic was thought to involve XcpP.
View Article and Find Full Text PDFGram-negative bacteria have evolved several types of secretion mechanisms to release proteins into the extracellular medium. One such mechanism, the type II secretory system, is a widely conserved two-step process. The first step is the translocation of signal peptide-bearing exoproteins across the inner membrane.
View Article and Find Full Text PDFMost of the exoproteins secreted by Pseudomonas aeruginosa are transported via the type II secretion system. This machinery, which is widely conserved in gram-negative bacteria, consists of 12 Xcp proteins organized as a multiprotein complex, also called the secreton. We previously reported that the mutual stabilization of XcpZ and XcpY plays an important role in the assembly of the secreton.
View Article and Find Full Text PDF