The pathogen Paracoccidioides lutzii (Pb01) is found in South America countries Colombia, Ecuador, Venezuela and Brazil, especially in the central, west, and north regions of the latter. It belongs to the Ajellomycetaceae family, Onygenales order, and is typically thermodimorphic, presenting yeast cells when it grows in animal tissues, but mycelia when in the environment, where it produces the infectious propagule. This fungus is one of the etiologic agents of Paracoccidioidomycosis (PCM), the most important endemic fungal infection in Latin America.
View Article and Find Full Text PDFMetagenomics is a modern approach to discovery of new enzymes with novel properties. This article reports the structure of a new lipase, belonging to family I.1, obtained by means of metagenomics.
View Article and Find Full Text PDFLipMF3 is a new lipase isolated from a metagenomic library derived from a fat-contaminated soil. It belongs to the lipase subfamily I.1 and has identities of 68% and 67% with lipases of Chromobacterium violaceum and C.
View Article and Find Full Text PDFIn previous work, a new lipase and its cognate foldase were identified and isolated from a metagenomic library constructed from soil samples contaminated with fat. This new lipase, called LipG9, is a true lipase that shows specific activities that are comparable to those of well-known industrially-used lipases with high activity against long-chain triglycerides. In the present work, LipG9 was co-expressed and co-immobilized with its foldase, on an inert hydrophobic support (Accurel MP1000).
View Article and Find Full Text PDFBackground: Metagenomics is a useful tool in the search for new lipases that might have characteristics that make them suitable for application in biocatalysis. This paper reports the cloning, co-expression, purification and characterization of a new lipase, denominated LipG9, and its specific foldase, LifG9, from a metagenomic library derived from a fat-contaminated soil.
Results: Within the metagenomic library, the gene lipg9 was cloned jointly with the gene of the foldase, lifg9.
Background: Metagenomics, the application of molecular genomics to consortia of non-cultivated microbes, has the potential to have a substantial impact on the search for novel industrial enzymes such as esterases (carboxyl ester hydrolases, EC 3.1.1.
View Article and Find Full Text PDFPteridine reductase (PTR1) is a target for drug development against Trypanosoma and Leishmania species, parasites that cause serious tropical diseases and for which therapies are inadequate. We adopted a structure-based approach to the design of novel PTR1 inhibitors based on three molecular scaffolds. A series of compounds, most newly synthesized, were identified as inhibitors with PTR1-species specific properties explained by structural differences between the T.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2009
Two crystal structures of recombinant Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase (Gs6PDH) in complex with the substrate 6-phosphogluconate have been determined at medium resolution. Gs6PDH shares significant sequence identity and structural similarity with the enzymes from Lactococcus lactis, sheep liver and the protozoan parasite Trypanosoma brucei, for which a range of structures have previously been reported. Comparisons indicate that amino-acid sequence conservation is more pronounced in the two domains that contribute to the architecture of the active site, namely the N-terminal and C-terminal domains, compared with the central domain, which is primarily involved in the subunit-subunit associations required to form a stable dimer.
View Article and Find Full Text PDF