Publications by authors named "Viviane Leopold"

-Adenosyl methionine (SAM)-dependent methyltransferases hold significant potential as tools for the biocatalytic synthesis of complex molecules due to their ability to methylate or alkylate substrates with high regio-, chemo-, and stereoselectivity. Recent advancements in enzyme-catalyzed -methylation and -alkylation of -adenosyl homocysteine (SAH) using synthetic alkylation agents have expanded the scope of methyltransferases in preparative biocatalysis. This development has transformed SAH from an unwanted byproduct into a crucial - and currently expensive - reagent.

View Article and Find Full Text PDF

Late-stage methylation is a key technology in the development of pharmaceutical compounds. Methyltransferase biocatalysis may provide powerful options to insert methyl groups into complex molecules with high regio- and chemoselectivity. The challenge of a large-scale application of methyltransferases is their dependence on S-adenosylmethionine (SAM) as a stoichiometric, and thus exceedingly expensive co-substrate.

View Article and Find Full Text PDF