Cruzipain (CZP), the major cysteine protease present in , the ethiological agent of Chagas disease, has attracted particular attention as a therapeutic target for the development of targeted covalent inhibitors (TCI). The vast chemical space associated with the enormous molecular diversity feasible to explore by means of modern synthetic approaches allows the design of CZP inhibitors capable of exhibiting not only an efficient enzyme inhibition but also an adequate translation to anti- activity. In this work, a computer-aided design strategy was developed to combinatorially construct and screen large libraries of 1,4-disubstituted 1,2,3-triazole analogues, further identifying a selected set of candidates for advancement towards synthetic and biological activity evaluation stages.
View Article and Find Full Text PDFOver 110 years after the first formal description of Chagas disease, the trypanocidal drugs thus far available have limited efficacy and several side effects. This encourages the search for novel treatments that inhibit T. cruzi targets.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
March 2022
The need to develop safer and more efficacious drugs to treat Chagas disease has motivated the search for cruzain inhibitors. Cruzain is the recombinant, truncated version of cruzipain, a cysteine protease from Trypanosoma cruzi with important roles during the parasite life cycle. Several computational techniques have been applied to discover and optimise cruzain inhibitors, providing a molecular basis to guide this process.
View Article and Find Full Text PDFThe cysteine protease cruzain is a Chagas disease target, exploited in computational studies. However, there is no consensus on the protonation states of the active site residues Cys25, His162, and Glu208 at the enzyme's active pH range. We evaluated the impact of different protonation states of these residues on docking calculations.
View Article and Find Full Text PDFCruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle.
View Article and Find Full Text PDFBioorg Chem
August 2021
Chagas disease (ChD), caused by Trypanosoma cruzi, remains a challenge for the medical and scientific fields due to the inefficiency of the therapeutic approaches available for its treatment. Thiosemicarbazones and hydrazones present a wide spectrum of bioactivities and are considered a platform for the design of new anti-T. cruzi drug candidates.
View Article and Find Full Text PDFToxicol Appl Pharmacol
October 2018
The Serine/arginine-rich protein kinases (SRPK) are involved in pre-mRNA splicing control through the phosphorylation of the SR protein family of splicing factors. Over the last years, several studies have shown the relevance of SRPK for human cancers and their potential as promising drug targets. In this context, we have previously selected three trifluoromethyl arylamides (named here as SRVIC24, SRVIC30 and SRVIC36) with improved in vitro antileukemia effect and ability of impairing the cellular activity of SRPK.
View Article and Find Full Text PDFCysteine proteases are essential hydrolytic enzymes present in the majority of organisms, including viruses and unicellular parasites. Despite the high sequence identity displayed among these proteins, specific structural features across different species grant distinct functions to these biomolecules, frequently related to pathological conditions. Consequently, their relevance as promising targets for potential specific inhibitors has been highlighted and occasionally validated in recent decades.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
December 2011
We examined strains of Trypanosoma cruzi isolated from patients with acute Chagas disease that had been acquired by oral transmission in the state of Santa Catarina, Brazil (2005) and two isolates that had been obtained from a marsupial (Didelphis aurita) and a vector (Triatoma tibiamaculata). These strains were characterised through their biological behaviour and isoenzymic profiles and genotyped according to the new Taxonomy Consensus (2009) based on the discrete typing unities, that is, T. cruzi genotypes I-VI.
View Article and Find Full Text PDF