Publications by authors named "Viviane Bes"

Background: Solid tumors such as glioblastoma (GBM) exhibit hypoxic zones that are associated with poor prognosis and immunosuppression through multiple cell intrinsic mechanisms. However, release of extracellular vesicles (EVs) has the potential to transmit molecular cargos between cells. If hypoxic cancer cells use EVs to suppress functions of macrophages under adequate oxygenation, this could be an important underlying mechanism contributing to the immunosuppressive and immunologically cold tumor microenvironment of tumors such as GBM.

View Article and Find Full Text PDF

Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues and outperformed the linear native peptide. During adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native Panx1 sequence.

View Article and Find Full Text PDF

Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3 glioblastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3-mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, characterized by a high degree of intertumoral heterogeneity. However, a common feature of the GBM microenvironment is hypoxia, which can promote radio- and chemotherapy resistance, immunosuppression, angiogenesis, and stemness. We experimentally defined common GBM adaptations to physiologically relevant oxygen gradients, and we assessed their modulation by the metabolic drug metformin.

View Article and Find Full Text PDF