Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has attracted substantial attention as a promising material for industrial applications. In this study, different PHBV films with distinct 3-hydroxyvalerate (3HV) contents produced by Azotobacter vinelandii OP were evaluated. The 3HV fraction ranged from 18.
View Article and Find Full Text PDFPoly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) is a polymer produced by OP. In the bioreactor, PHBV production and its molar composition are affected by aeration rate. PHBV production by OP was evaluated using extended batch cultures at different aeration rates, which determined different oxygen transfer rates (OTR) in the cultures.
View Article and Find Full Text PDFIn the present study, the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Azotobacter vinelandii was evaluated in shake flasks and bioreactors, utilizing different precursors and oxygen transfer rates (OTRs). In shake flask cultures, the highest PHBV yield from sucrose (0.16 g g) and 3-hydroxyvalerate (3HV) fraction in the PHA chain (27.
View Article and Find Full Text PDFCoenzyme Q (CoQ) plays an important role as an electron transporter in the respiratory chain. It is formed from a benzoquinone ring and an isoprenoid chain of a specific length depending on the organism. We constructed an engineered Escherichia coli strain (menF) unable to produce demethylmenaquinone and menaquinone, compounds that compete for both chorismate, precursor of the benzoquinone ring, and the isoprenoid chain involved in CoQ biosynthesis.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are biodegradable bioplastics that are synthesized by diverse bacteria. In this study, the synthesis of PHAs by the model aromatic-degrading strain Burkholderia xenovorans LB400 was analyzed. Twelve pha genes including three copies of phaC and five copies of the phasin-coding phaP genes are distributed among the three LB400 replicons.
View Article and Find Full Text PDFAzotobacter vinelandii OP is a bacterium that produces poly(3-hydroxybutyrate) (PHB). PHB production in a stirred bioreactor, at different oxygen transfer strategies, was evaluated. By applying different oxygen contents in the inlet gas, the oxygen transfer rate (OTR) was changed under a constant agitation rate.
View Article and Find Full Text PDFAs a consequence of the severe climatic change affecting our entire world, many lakes in the Andes Cordillera are likely to disappear within a few decades. One of these lakes is Lejía Lake, located in the central Atacama Desert. The objectives of this study were: (1) to characterize the bacterial community from Lejía Lake shore soil (LLS) using 16S rRNA sequencing and (2) to test a culture-based approach using a soil extract medium (SEM) to recover soil bacteria.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
October 2017
Alginate is a linear polysaccharide that can be used for different applications in the food and pharmaceutical industries. These polysaccharides have a chemical structure composed of subunits of (1-4)-β-D-mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G). The monomer composition and molecular weight of alginates are known to have effects on their properties.
View Article and Find Full Text PDFNano- and microfibers obtained by electrospinning have attracted great attention due to its versatility and potential for applications in diverse technological fields. Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by microorganisms such as the bacterium Burkholderia xenovorans LB400. In particular, LB400 cells are capable to synthesize poly(3-hydroxybutyrate) (PHB) from glucose.
View Article and Find Full Text PDFInt J Biol Macromol
September 2014
Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics.
View Article and Find Full Text PDFThe Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep.
View Article and Find Full Text PDF