Publications by authors named "Viviana Mulloni"

Packaging solutions have recently evolved to become smart and intelligent thanks to technologies such as RFID tracking and communication systems, but the integration of sensing functionality in these systems is still under active development. In this paper, chipless RFID humidity sensors suitable for smart packaging are proposed together with a novel strategy to tune their performances and their operating range. The sensors are flexible, fast, low-cost and easy to fabricate and can be read wirelessly.

View Article and Find Full Text PDF

Chipless radio-frequency identification (RFID) sensors are not yet widespread in practical applications because of their limited sensitivity and selectivity when compared to more mature sensing technologies. The search for a suitable material to perform the sensing function has often been focused on the most common materials used in electrochemical sensing approaches, but little work has been done to directly relate the performances of chipless or microwave sensors to the characteristics of the materials used to fabricate them. In this work we are simulating the impact of the substrate material on the performances of a chipless RFID sensor for humidity detection.

View Article and Find Full Text PDF

Radio-frequency identification (RFID) sensors are one of the fundamental components of the internet of things that aims at connecting every physical object to the cloud for the exchange of information. In this framework, chipless RFIDs are a breakthrough technology because they remove the cost associated with the chip, being at the same time printable, passive, low-power and suitable for harsh environments. After the important results achieved with multibit chipless tags, there is a clear motivation and interest to extend the chipless sensing functionality to physical, chemical, structural and environmental parameters.

View Article and Find Full Text PDF

The accurate determination of biological parameters by means of rapid, on-line measurements at low-concentrations is an important task within the fields of pharmaceutical screening and medical diagnostic. Nevertheless, in biological samples, the analytes of interest are present as minor components in complex mixtures and with interfering species. Biosensors are the best candidates for these applications providing a direct solution to this need of accuracy, but their intrinsic selectivity often excludes all the other components in the sample.

View Article and Find Full Text PDF