Due to the rising incidence of antibiotic-resistant infections, the last-line antibiotics, polymyxins, have resurged in the clinics in parallel with new bacterial strategies of escape. The Gram-negative opportunistic pathogen develops resistance to colistin/polymyxin B by distinct molecular mechanisms, mostly through modification of the lipid A component of the LPS by proteins encoded within the () operon. In this work, we characterized a polymyxin-induced operon named , present in strains devoid of the operon.
View Article and Find Full Text PDFPeptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, genes are present in a single operon within the well conserved cluster, and in some cases, pairs of genes are fused to encode a single, chimeric polypeptide.
View Article and Find Full Text PDFTwo-partner secretion (TPS) is widespread in the bacterial world. The pore-forming TPS toxin ExlA of is conserved in pathogenic and environmental . While and displayed ExlA-dependent killing, did not cause damage to eukaryotic cells.
View Article and Find Full Text PDFExlA is a highly virulent pore-forming toxin that has been recently discovered in outlier strains from . ExlA is part of a two-partner secretion system, in which ExlA is the secreted passenger protein and ExlB the transporter embedded in the bacterial outer membrane. In previous work, we observed that ExlA toxicity in a host cell was contact-dependent.
View Article and Find Full Text PDFPseudomonas aeruginosa can cause nosocomial infections, especially in ventilated or cystic fibrosis patients. Highly pathogenic isolates express the phospholipase ExoU, an effector of the type III secretion system that acts on plasma membrane lipids, causing membrane rupture and host cell necrosis. Here, we use a genome-wide screen to discover that ExoU requires DNAJC5, a host chaperone, for its necrotic activity.
View Article and Find Full Text PDFThe elongasome, or Rod system, is a protein complex that controls cell wall formation in rod-shaped bacteria. MreC is a membrane-associated elongasome component that co-localizes with the cytoskeletal element MreB and regulates the activity of cell wall biosynthesis enzymes, in a process that may be dependent on MreC self-association. Here, we use electron cryo-microscopy and X-ray crystallography to determine the structure of a self-associated form of MreC from Pseudomonas aeruginosa in atomic detail.
View Article and Find Full Text PDFBacteria employ several mechanisms, and most notably secretion systems, to translocate effectors from the cytoplasm to the extracellular environment or the cell surface. Pseudomonas aeruginosa widely employs secretion machineries such as the Type III Secretion System to support virulence and cytotoxicity. However, recently identified P.
View Article and Find Full Text PDFThe Gram-negative bacteria use the contractile multi-molecular structure, called the Type VI Secretion System (T6SS) to inject toxic products into eukaryotic and prokaryotic cells. In this study, we use fluorescent protein fusions and time-lapse microscopy imaging to study the assembly dynamics of the baseplate protein TssK in T6SS. TssK formed transient higher-order structures that correlated with dynamics of sheath component TssB.
View Article and Find Full Text PDFThe type II secretion system (T2SS) is a cell envelope-spanning macromolecular complex that is prevalent in Gram-negative bacterial species. It serves as the predominant virulence mechanism of many bacteria including those of the emerging human pathogens Vibrio vulnificus and Aeromonas hydrophila. The system is composed of a core set of highly conserved proteins that assemble an inner membrane platform, a periplasmic pseudopilus and an outer membrane complex termed the secretin.
View Article and Find Full Text PDFThe type three secretion system (T3SS) is a macromolecular protein nano-syringe used by different bacterial pathogens to inject effectors into host cells. The extracellular part of the syringe is a needle-like filament formed by the polymerization of a 9-kDa protein whose structure and proper localization on the bacterial surface are key determinants for efficient toxin injection. Here, we combined , , and approaches to characterize the T3SS needle and its major component PscF.
View Article and Find Full Text PDFPeptidoglycan is a major component of the bacterial cell wall and thus a major determinant of cell shape. Its biosynthesis is initiated by several sequential reactions catalyzed by cytoplasmic Mur enzymes. Mur ligases (MurC, -D, -E, and -F) are essential for bacteria, metabolize molecules not present in eukaryotes, and are structurally and biochemically tractable.
View Article and Find Full Text PDFAlpha-2-macroglobulins (A2Ms) are large spectrum protease inhibitors that are major components of the eukaryotic immune system. Pathogenic and colonizing bacteria, such as the opportunistic pathogen Pseudomonas aeruginosa, also carry structural homologs of eukaryotic A2Ms. Two types of bacterial A2Ms have been identified: Type I, much like the eukaryotic form, displays a conserved thioester that is essential for protease targeting, and Type II, which lacks the thioester and to date has been poorly studied despite its ubiquitous presence in Gram-negatives.
View Article and Find Full Text PDFSecretins, the outer membrane components of several secretion systems in Gram-negative bacteria, assemble into channels that allow exoproteins to traverse the membrane. The membrane-inserted, multimeric regions of PscC, the Pseudomonas aeruginosa type III secretion system secretin, and PulD, the Klebsiella oxytoca type II secretion system secretin, were purified after cell-free synthesis and their structures analyzed by single particle cryoelectron microscopy. Both homomultimeric, barrel-like structures display a "cup and saucer" architecture.
View Article and Find Full Text PDFUnlabelled: The nucleus has emerged as a key target for nucleomodulins, a family of effectors produced by bacterial pathogens to control host transcription or other nuclear processes. The virulence factor LntA from Listeria monocytogenes stimulates interferon responses during infection by inhibiting BAHD1, a nuclear protein involved in gene silencing by promoting heterochromatin formation. So far, whether the interaction between LntA and BAHD1 is direct and sufficient for inhibiting BAHD1 activity is unknown.
View Article and Find Full Text PDFThe type III secretion system is a widespread apparatus used by pathogenic bacteria to inject effectors directly into the cytoplasm of eukaryotic cells. A key component of this highly conserved system is the translocon, a pore formed in the host membrane that is essential for toxins to bypass this last physical barrier. In Pseudomonas aeruginosa the translocon is composed of PopB and PopD, both of which before secretion are stabilized within the bacterial cytoplasm by a common chaperone, PcrH.
View Article and Find Full Text PDFListeria monocytogenes is a human pathogen that employs a wide variety of virulence factors in order to adhere to, invade, and replicate within target cells. Internalins play key roles in processes ranging from adhesion to receptor recognition and are thus essential for infection. Recently, InlK, a surface-associated internalin, was shown to be involved in Listeria's ability to escape from autophagy by recruitment of the major vault protein (MVP) to the bacterial surface.
View Article and Find Full Text PDFα(2) macroglobulins (α(2)Ms) are broad-spectrum protease inhibitors that play essential roles in the innate immune system of eukaryotic species. These large, multi-domain proteins are characterized by a broad-spectrum bait region and an internal thioester, which, upon cleavage, becomes covalently associated to the target protease, allowing its entrapment by a large conformational modification. Notably, α(2)Ms are part of a larger protein superfamily that includes proteins of the complement system, such as C3, a multi-domain macromolecule which is also characterized by an internal thioester-carrying domain and whose activation represents the pivotal step in the complement cascade.
View Article and Find Full Text PDFIn Gram-negative bacteria, the bacterial cell wall biosynthetic mechanism requires the coordinated action of enzymes and structural proteins located in the cytoplasm, within the membrane, and in the periplasm of the cell. Its main component, peptidoglycan (PG), is essential for cell division and wall elongation. Penicillin-binding proteins (PBPs) catalyze the last steps of PG biosynthesis, namely the polymerization of glycan chains and the cross-linking of stem peptides, and can be either monofunctional or bifunctional.
View Article and Find Full Text PDFPseudomonas aeruginosa is an opportunistic human pathogen that employs a finely tuned type III secretion system (T3SS) to inject toxins directly into the cytoplasm of target cells. ExsB is a 15.6-kDa protein encoded in a T3SS transcription regulation operon that displays high sequence similarity to YscW, a lipoprotein from Yersinia spp.
View Article and Find Full Text PDFβ-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis. Many pathogens express drug-insensitive PBPs rendering β-lactams ineffective, revealing a need for new types of PBP inhibitors active against resistant strains. We have identified alkyl boronic acids that are active against pathogens including methicillin-resistant S.
View Article and Find Full Text PDFThe type III secretion system (T3SS) is employed by a number of Gram-negative bacterial pathogens to inject toxins into eukaryotic cells. The biogenesis of this complex machinery requires the regulated interaction between over 20 cytosolic, periplasmic, and membrane-imbedded proteins, many of which undergo processes such as polymerization, partner recognition, and partial unfolding. Elements of this intricate macromolecular system have been characterized through electron microscopy, crystallography, and NMR techniques, allowing for an initial understanding of the spatiotemporal regulation of T3SS-related events.
View Article and Find Full Text PDFThe type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection.
View Article and Find Full Text PDFType III secretion (T3S) systems allow the export and translocation of bacterial effectors into the host cell cytoplasm. Secretion is accomplished by an 80-nm-long needle-like structure composed, in Pseudomonas aeruginosa, of the polymerized form of a 7-kDa protein, PscF. Two proteins, PscG and PscE, stabilize PscF within the bacterial cell before its export and polymerization.
View Article and Find Full Text PDF