Philos Trans R Soc Lond B Biol Sci
August 2024
Environmental DNA metabarcoding (eDNA metaB) is fundamental for monitoring marine biodiversity and its spread in coastal ecosystems. We applied eDNA metaB to seawater samples to investigate the spatiotemporal variability of plankton and small pelagic fish, comparing sites with different environmental conditions across a coast-to-offshore gradient at river mouths along the Campania coast (Italy) over 2 years (2020-2021). We found a marked seasonality in the planktonic community at the regional scale, likely owing to the hydrodynamic connection among sampling sites, which was derived from numerical simulations.
View Article and Find Full Text PDFUnderstanding the genetic structure of populations and the processes responsible for its spatial and temporal dynamics is vital for assessing species' adaptability and survival in changing environments. We investigate the genetic fingerprinting of blooming populations of the marine diatom Pseudo-nitzschia multistriata in the Gulf of Naples (Mediterranean Sea) from 2008 to 2020. Strains were genotyped using microsatellite fingerprinting and natural samples were also analysed with Microsatellite Pool-seq Barcoding based on Illumina sequencing of microsatellite loci.
View Article and Find Full Text PDF