Publications by authors named "Viviana C Blank"

Sphingosine kinase-1 (SPHK1), the enzyme that catalyzes the synthesis of the pro-oncogenic molecule sphingosine-1-phosphate, is commonly upregulated in breast cancer cells and has been linked with poor prognosis and progression by promoting cell transformation, proliferation, angiogenesis, and metastasis. Therefore, SPHK1-targeting drugs have been proposed for breast cancer treatment, with better antitumor results when they are combined with chemotherapy. Previously, we demonstrated that the synthetic flavonoid 2'-nitroflavone (2'NF) exerted a potent and selective antiproliferative effect in murine HER2-positive LM3 mammary tumor cells.

View Article and Find Full Text PDF

An extended library of hybrids that combined a penicillin derivative with a peptoid moiety was designed and synthetized using either a solid-phase or a mixed solid-phase/solution-phase strategy. The library was further evaluated for antiproliferative activity. While none of the different synthesized compounds showed significant cytotoxicity against a normal cell line, tumor cell results drew several conclusions, when comparing with our reference, the highly active triazolylpeptidyl penicillin derivative, TAF7f.

View Article and Find Full Text PDF

Previously , we demonstrated that the non-antibiotic penicillin derivative TAP7f inhibited melanoma metastasis in vitro and in vivo through the downregulation of β-catenin and integrin αVβ3. As angiogenesis is required for tumor growth and metastasis, we decided to explore the possible antiangiogenic effect of TAP7f. We found that TAP7f inhibited proliferation, migration, tube formation, and actin cytoskeleton organization of human endothelial cells.

View Article and Find Full Text PDF

The development of hybrid compounds led to the discovery of new pharmacologically active agents for some of the most critical diseases, including cancer. Herein, we describe a new series of oxadiazole-containing structures designed by a molecular hybridization approach. Penicillin derivatives and amino acids were linked to amino acid and aromatic moieties through the formation of a 1,2,4-oxadiazole ring.

View Article and Find Full Text PDF

We have previously examined the in vitro and in vivo antitumor action of TAP7f, a synthetic triazolylpeptidyl penicillin, on murine melanoma cells. In this work, we explored the signal transduction pathways modulated by TAP7f in murine B16-F0 and human A375 melanoma cells, and the contribution of some intracellular signals to the apoptotic cell death. TAP7f decreased ERK1/2 phosphorylation and increased phospho-p38, phospho-JNK and phospho-Akt levels.

View Article and Find Full Text PDF

Encouraged by the antitumor activity exhibited by triazolylpeptidyl penicillins, we decided to synthesize and evaluate a library of peptoid analogs. The replacement of the dipeptide unit of the reference compound, TAP7f, was investigated. In addition, the effect of the triazole linking group on the biological activity of these new derivatives was evaluated, exchanging it with a glycine spacer.

View Article and Find Full Text PDF

The synthetic triazolylpeptidyl penicillin derivative, named TAP7f, has been previously characterized as an effective antitumor agent and against B16-F0 melanoma cells. In this study, we investigated the anti-metastatic potential of this compound on highly metastatic murine B16-F10 and human A375 melanoma cells. We found that TAP7f inhibited cell adhesion, migration and invasion in a dose-dependent manner.

View Article and Find Full Text PDF

Multiple cytokines and growth factors expressed at the fetal-maternal interface are involved in the regulation of trophoblast functions and placental growth, but the role of G-CSF has not been completely established. Based on our previous study showing that G-CSF increases the activity of matrix metalloproteinase-2 and the release of vascular endothelial growth factor in Swan 71 human trophoblast cells, in this work we explore the possible contribution of G-CSF to cell migration and the G-CSF-triggered signaling pathway. We found that G-CSF induced morphological changes on actin cytoskeleton consistent with a migratory cell phenotype.

View Article and Find Full Text PDF

In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells.

View Article and Find Full Text PDF

The cytotoxic activity of 2'-nitroflavone was evaluated in different haematological cancer cell lines and its mechanism of action was further studied in HL-60 cells. 2'-Nitroflavone arrested the cell cycle at the G(2)/M phase and induced an apoptotic response characterized by an increase in the sub-G1 fraction of cells, a typical DNA ladder fragmentation, chromatin condensation and the detection of cells stained with Annexin V. Apoptosis was dependent on the activation of at least caspase-8, caspase-9 and caspase-3.

View Article and Find Full Text PDF

In the search of mimetic peptides of the interferon-alpha2b molecule (IFN-alpha2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-alpha2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-alpha2b stimulus.

View Article and Find Full Text PDF

The mechanism of antitumor action of a synthetic nitroflavone derivative, 2'-nitroflavone, was evaluated in vitro in HeLa human cervix adenocarcinoma cells. We showed that the nitroflavone derivative slowed down the cell cycle at the S phase and increase the population of cells at the G2/M phase after 24h of incubation. The treatment with 2'-nitroflavone also induced an apoptotic response, characterized by an increase of the sub-G1 fraction of cells, by cells with chromatin condensation and membrane blebbing, by a typical ladder of DNA fragmentation and by detection of apoptotic cells stained with Annexin V.

View Article and Find Full Text PDF

Interferons alpha (IFNsalpha) are a family of related proteins exhibiting antiviral, antiproliferative and immunoregulatory activities. Although IFNsalpha have been widely employed for the pharmacological treatment of different types of cancer, the therapeutic efficacy occasionally can be diminished by the appearance of side effects, neutralizing antibodies or tumor resistance. In the search of mimetic peptides of the IFN-alpha2b molecule, we have recently synthesized a chimeric cyclic peptide that inhibits IFN-alpha2b binding to its receptor and exerts an IFN-like antiproliferative activity.

View Article and Find Full Text PDF

The effect of various natural flavonoids, cinnamic acid derivatives, and a series of synthetic flavones on cell proliferation was evaluated in vitro in a panel of established human and murine tumor cell lines. The most potent antiproliferative agents were caffeic acid n-butyl ester (12) > 2'-nitroflavone (26) > caffeic acid ethyl ester (11) approximately = 2',6-dinitroflavone (27) > apigenin (3) > 3'-bromoflavone (20) approximately = 2'-fluoro-6-bromoflavone (31). Some compounds showed a moderate effect, the order of cytotoxic activities being chrysin (2) > 2'-fluoro-6-chloroflavone (30) approximately = 2'-chlorochrysin (32) > alpha-naphthoflavone (7) > beta-naphthoflavone (8) approximately = 6-chloroflavone (14) approximately = 6-bromoflavone (15) approximately = 4'-nitroflavone (23).

View Article and Find Full Text PDF

We have previously reported the antiproliferative activity of synthetic sequences 29-35 and 122-139 of the interferon-alpha2b (IFN-alpha2b), both probably representing a common receptor recognition domain. In the search of new peptidic agonists, we designed and synthesized the linear peptide (Gly)2-122-137-Gly138-Gly29-30-35-(Gly)2, in which Gly residues replaced the 138 and 29 Cys bound through a disulfide bridge in the native cytokine. Additionally, a cyclic analog was obtained by reaction of the N- and C-terminal ends of the linear fragment.

View Article and Find Full Text PDF

The antiproliferative activity of several natural and synthetic flavonoids and some related compounds was evaluated in vitro against a cell line derived from a human cervical carcinoma (WISH cells). According to their activities, the most potent derivatives were 2'-nitroflavone (14), 2',6-dinitroflavone (15) and the n-buthyl ester of caffeic acid (29). When these compounds were tested in the presence of recombinant human interferon-alpha2b (rhIFN-alpha2b), a cytokine exhibiting an antimitogenic action on WISH cells, an additive effect on cell growth inhibition was observed.

View Article and Find Full Text PDF