The demand for skin models as alternatives to animal testing has grown due to ethical concerns and the need for accurate substance evaluation. These alternatives, known as New Approach Methodologies (NAMs), are increasingly used for regulatory decisions. Current skin models from primary human cells often rely on bovine collagen, raising ethical issues.
View Article and Find Full Text PDFNanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality.
View Article and Find Full Text PDFDrug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines.
View Article and Find Full Text PDFPolyglycerol scaffolds and nanoparticles emerged as prominent material for various biomedical applications including topical drug delivery. The impact of slight structural modifications on the nanoparticles' properties, drug delivery potential, and biocompatibility, however, is still not fully understood.Hence, we explored the influence of structural modifications of five structurally related polyglycerol-based nanoparticles (PG-PEG, SK1-SK5) on dermal drug delivery efficiency and biocompatibility.
View Article and Find Full Text PDF