Publications by authors named "Vivian Issa"

The sea surface is a complex dynamic structure dependent on atmospheric conditions, and for which physical and chemical properties change from water to foam. Its roughness determines how the surface reflects, absorbs, and emits radiance, and depends on multiple parameters such as wind speed and direction, and foam and turbulence induced from natural waves or from object displacement. In this paper, a model description is given for laser reflection on the sea surface in open water driven by the wind.

View Article and Find Full Text PDF

We have modeled the white water wake of a ship as a single layer of bubbles packed on the sea surface within the perimeter of the trailing turbulent wake. The size of the bubbles is considered greater than the midwave infrared wavelengths such that the optical geometrical approximation remains valid. The upper half bubble hemisphere is meshed into facets, and we calculate the probability density function of their slopes and constrain that distribution by the geometrical limits imposed by the position of the receiver through the shadowing of facets by other bubbles and of facets that are facing away from the receiver.

View Article and Find Full Text PDF

The sea surface turbulent trailing wake of a ship, which can be rather easily observed in the infrared by airborne surveillance systems, is a consequence of the difference in roughness and temperature between the wake and the sea background. We have developed a phenomenological model for the infrared radiance of the turbulent wake by assuming that the sea surface roughness is dependent upon the turbulent intensity near the sea surface. Describing the sea surface roughness with a Cox and Munk probability distribution function of slopes, we distinguish on the sea surface between the sea background and the turbulent wake by the variance of sea surface slopes, σCM2=constant and σTW2(x,y)≠constant.

View Article and Find Full Text PDF