Rationale And Objectives: Computed tomography (CT) is preferred for evaluating solitary pulmonary nodules (SPNs) but access or availability may be lacking, in addition, overlapping anatomy can hinder detection of SPNs on chest radiographs. We developed and evaluated the clinical feasibility of a deep learning algorithm to generate digitally reconstructed tomography (DRT) images of the chest from digitally reconstructed frontal and lateral radiographs (DRRs) and use them to detect SPNs.
Methods: This single-institution retrospective study included 637 patients with noncontrast helical CT of the chest (mean age 68 years, median age 69 years, standard deviation 11.
Rationale And Objectives: The clinical prognosis of outpatients with coronavirus disease 2019 (COVID-19) remains difficult to predict, with outcomes including asymptomatic, hospitalization, intubation, and death. Here we determined the prognostic value of an outpatient chest radiograph, together with an ensemble of deep learning algorithms predicting comorbidities and airspace disease to identify patients at a higher risk of hospitalization from COVID-19 infection.
Materials And Methods: This retrospective study included outpatients with COVID-19 confirmed by reverse transcription-polymerase chain reaction testing who received an ambulatory chest radiography between March 17, 2020 and October 24, 2020.
To quantify the extent of patient sharing and inpatient care fragmentation among patients discharged from a cohort of Chicago hospitals. Admission and discharge dates and patient ZIP codes from 5 hospitals over 2 years were matched with an encryption algorithm. Admission to more than one hospital was considered fragmented care.
View Article and Find Full Text PDF