Publications by authors named "Vivek Venkataramani"

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. Familial cases of PD are often caused by mutations of PTEN-induced kinase 1 (PINK1) and the ubiquitin ligase Parkin, both pivotal in maintaining mitochondrial quality control. CISD1, a homodimeric mitochondrial iron-sulfur-binding protein, is a major target of Parkin-mediated ubiquitination.

View Article and Find Full Text PDF

This case report describes the efficacy of selpercatinib, a selective RET inhibitor, in an unusual case of large-cell neuroendocrine pancreatic carcinoma (LCNEPAC) harboring a CCDC6::RET fusion. A 56-year-old male with a history of multiple lines of systemic therapies exhibited marked clinical amelioration shortly after initiating selpercatinib within the LOXO-RET-17001 study (ClinicalTrials.gov ID: NCT03157128, first posted: 2017-05-17).

View Article and Find Full Text PDF
Article Synopsis
  • Ferroptosis is a key form of cell death linked to various diseases, characterized by excessive peroxidation of fatty acids in cell membranes, which causes the cell to rupture.
  • This process is influenced by iron and redox balance within cells but can also be targeted for pharmacological treatments, making ferroptosis-related proteins potential candidates for new therapies.
  • A research consortium in Germany, along with leading experts, aims to review the mechanisms, significance, and methodologies related to ferroptosis to promote further research and potential new treatments for diseases affected by this process.
View Article and Find Full Text PDF

We show that redox active iron can induce a regulated form of non-apoptotic cell death and tissue damage called ferroptosis that can contribute to secondary damage and functional loss in the acute and chronic periods after spinal cord injury (SCI) in young, adult, female mice. Phagocytosis of red blood cells at sites of hemorrhage is the main source of iron derived from hemoglobin after SCI. Expression of hemeoxygenase-1 that induces release of iron from heme, is increased in spinal cord macrophages 7 days after injury.

View Article and Find Full Text PDF

Purpose: Providing patient access to precision oncology (PO) is a major challenge of clinical oncologists. Here, we provide an easily transferable model from strategic management science to assess the outreach of a cancer center.

Methods: As members of the German WERA alliance, the cancer centers in Würzburg, Erlangen, Regensburg and Augsburg merged care data regarding their geographical impact.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by central nervous (CNS) demyelination resulting in axonal injury and neurological deficits. Essentially, MS is driven by an auto-amplifying mechanism of inflammation and cell death. Current therapies mainly focus on disease modification by immunosuppression, while no treatment specifically focuses on controlling cell death injury.

View Article and Find Full Text PDF
Article Synopsis
  • - Ferroptosis, a type of cell death caused by lipid damage and excess iron, is believed to play a role in the progressive stages of multiple sclerosis (MS) as seen in a chronic mouse model (CH-EAE) where changes in ferroptosis-related genes were noted.
  • - The study found increased expression of iron importers and NCOA4, which promotes iron release from storage, during disease progression, as well as decreased antioxidant defenses leading to higher lipid peroxidation.
  • - Treatment with a ferroptosis inhibitor improved function and pathology in mice with CH-EAE, suggesting that targeting ferroptosis could be a potential strategy in addressing the progression of MS.
View Article and Find Full Text PDF

It is with great pleasure that we introduce this Special Issue on "Homeostasis: Metals and Cellular Redox and Immunity Status" [...

View Article and Find Full Text PDF

The iron hormone hepcidin is transcriptionally activated by iron or inflammation via distinct, partially overlapping pathways. We addressed how iron affects inflammatory hepcidin levels and the ensuing hypoferremic response. Dietary iron overload did not mitigate hepcidin induction in lipopolysaccharide (LPS)-treated wild type mice but prevented effective inflammatory hypoferremia.

View Article and Find Full Text PDF

Systemic transplantation of oxygen-glucose deprivation (OGD)-preconditioned primary microglia enhances neurological recovery in rodent stroke models, albeit the underlying mechanisms have not been sufficiently addressed. Herein, we analyzed whether or not extracellular vesicles (EVs) derived from such microglia are the biological mediators of these observations and which signaling pathways are involved in the process. Exposing bEnd.

View Article and Find Full Text PDF

Male germ cell (GC) production is a metabolically driven and apoptosis-prone process. Here, we show that the glucose-sensing transcription factor (TF) MAX-Like protein X (MLX) and its binding partner MondoA are both required for male fertility in the mouse, as well as survival of human tumor cells derived from the male germ line. Loss of Mlx results in altered metabolism as well as activation of multiple stress pathways and GC apoptosis in the testes.

View Article and Find Full Text PDF

Inhibition of fatty acid synthesis (FAS) stimulates tumor cell death and reduces angiogenesis. When SH-SY5Y cells or primary neurons are exposed to hypoxia only, inhibition of FAS yields significantly enhanced cell injury. The pathophysiology of stroke, however, is not only restricted to hypoxia but also includes reoxygenation injury.

View Article and Find Full Text PDF

Background: Transition metals play a crucial role in brain metabolism: since they exist in different oxidation states they are involved in ROS generation, but they are also co-factors of enzymes in cellular energy metabolism or oxidative defense.

Methods: Paired serum and cerebrospinal fluid (CSF) samples were analyzed for iron, zinc, copper and manganese as well as for speciation using SEC-ICP-DRC-MS. Brain extracts from Mn-exposed rats were additionally analyzed with SEC-ICP-DRC-MS.

View Article and Find Full Text PDF

Iron is an ancient, essential and versatile transition metal found in almost all living organisms on Earth. This fundamental trace element is used in the synthesis of heme and iron-sulfur (Fe-S) containing proteins and other vital cofactors that are involved in respiration, redox reactions, catalysis, DNA synthesis and transcription. At the same time, the ability of iron to cycle between its oxidized, ferric (Fe) and its reduced, ferrous (Fe) state contributes to the production of free radicals that can damage biomolecules, including proteins, lipids and DNA.

View Article and Find Full Text PDF
Article Synopsis
  • BNIP3 is a protein that seems important in how melanoma (a type of skin cancer) grows, and higher levels of it are linked to worse survival for patients.
  • When scientists removed BNIP3 from melanoma cells, the tumors grew slower, and it changed how the cells used energy.
  • The study found that BNIP3 affects another protein called HIF-1α, which helps tumors grow, showing that BNIP3 might be an important player in cancer growth that we didn't know about before.
View Article and Find Full Text PDF

Fungi of the order Mucorales cause mucormycosis, a lethal infection with an incompletely understood pathogenesis. We demonstrate that Mucorales fungi produce a toxin, which plays a central role in virulence. Polyclonal antibodies against this toxin inhibit its ability to damage human cells in vitro and prevent hypovolemic shock, organ necrosis and death in mice with mucormycosis.

View Article and Find Full Text PDF

Grafted mesenchymal stem cells (MSCs) yield neuroprotection in preclinical stroke models by secreting extracellular vesicles (EVs). The neuroprotective cargo of EVs, however, has not yet been identified. To investigate such cargo and its underlying mechanism, primary neurons were exposed to oxygen-glucose-deprivation (OGD) and cocultured with adipose-derived MSCs (ADMSCs) or ADMSC-secreted EVs.

View Article and Find Full Text PDF

Lithium is neuroprotective in preclinical stroke models. In addition to that, poststroke neuroregeneration is stimulated upon transplantation of mesenchymal stem cells (MSCs). Preconditioning of MSCs with lithium further enhances the neuroregenerative potential of MSCs, which act by secreting extracellular vesicles (EVs).

View Article and Find Full Text PDF

Lithium induces neuroprotection against cerebral ischemia, although the underlying mechanisms remain elusive. We have previously suggested a role for lithium in calcium regulation and (extra)cerebral vessel relaxation under non-ischemic conditions. Herein, we aimed to investigate whether or not lithium contributes to post-stroke stabilization of the blood-brain barrier (BBB) in mice.

View Article and Find Full Text PDF

Dyshomeostasis of iron metabolism is accounted in the pathophysiological framework of numerous diseases, including cancer and several neurodegenerative conditions. Excessive iron results in free redox-active Fe(II) and can cause devastating effects within the cell like oxidative stress (OS) and death by lipid peroxidation known as ferroptosis (FPT). Therefore, quantitative measurements of ferrous (Fe(II)) and ferric (Fe(III)) iron rather than total Fe-determination is the key for closer insight into these detrimental processes.

View Article and Find Full Text PDF

Tightly regulated activity of the transcription factor MYC is essential for orderly cell proliferation. Upon deregulation, MYC elicits and promotes cancer progression. Proteasomal degradation is an essential element of MYC regulation, initiated by phosphorylation at Serine62 (Ser62) of the MB1 region.

View Article and Find Full Text PDF

Manganese (Mn) is an essential trace element that is naturally found in the environment and is necessary as a cofactor for many enzymes and is important in several physiological processes that support development, growth, and neuronal function. However, overexposure to Mn may induce neurotoxicity and may contribute to the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The present review aims to provide new insights into the involvement of Mn in the etiology of AD and PD.

View Article and Find Full Text PDF

Lead (Pb) is an environmental neurotoxicant, and has been implicated in several neurological disorders of dopaminergic dysfunction; however, the molecular mechanism of its toxicity has yet to be fully understood. This study investigated the effect of Pb exposure on dopaminergic neurodegeneration and function, as well as expression level of several dopaminergic signaling genes in wild type (N2) and protein kinase C () mutant . Both N2 and mutant worms were exposed to Pb for 1 h.

View Article and Find Full Text PDF

Neuronal iron dyshomeostasis occurs in multiple neurodegenerative diseases. Changes in the Fe(II)/Fe(III) ratio toward Fe(II) is closely related to oxidative stress, lipid peroxidation, and represents a hallmark feature of ferroptosis. In particular for body fluids, like cerebrospinal fluid (CSF), reliable quantitative methods for Fe(II)/(III) redox-speciation analysis are needed to better assess the risk of Fe(II)-mediated damage in brain tissue.

View Article and Find Full Text PDF

Ischemic conditioning is defined as a transient and subcritical period of ischemia integrated in an experimental paradigm that involves a stimulus of injurious ischemia, activating endogenous tissue repair mechanisms that lead to cellular protection under pathological conditions like stroke. Whereas ischemic pre-conditioning is irrelevant for stroke treatment, ischemic post-conditioning, and especially non-invasive remote ischemic post-conditioning (rPostC) is an innovative and potential strategy for stroke treatment. Although rPostC has been shown to induce neuroprotection in stroke models before, resulting in some clinical trials on the way, fundamental questions with regard to its therapeutic time frame and its underlying mechanisms remain elusive.

View Article and Find Full Text PDF