Evidence is shown that cosolvent mixtures control the coacervation of mixtures of oppositely charged polyelectrolytes. Binary and ternary solvent mixtures lead to non-monotonic solubility as a function of the average dielectric constants of the solvent mixtures. These data are rationalized by considering both electrostatic-driven phase separation and solvophobic-driven phase separation using group contribution effects on solubility parameters.
View Article and Find Full Text PDFPolyorganophosphazenes are water-soluble macromolecules with immunoadjuvant activity that self-assemble with proteins to enable biological functionality. Direct imaging by cryogenic electron microscopy uncovers the coil structure of those highly charged macromolecules. The successful visualization of individual polymer chains within the vitrified state is achieved in the absence of additives for contrast enhancement and is attributed to the high mass contrast of the inorganic backbone.
View Article and Find Full Text PDFPolyorganophosphazenes are biodegradable macromolecules with potent immunoadjuvant activity that self-assemble with protein antigens to provide biological activity. Direct imaging by cryogenic electron microscopy reveals the coil structure of the highly-charged high molecular mass synthetic polyorganophosphazenes within the vitrified state without any additives for contrast enhancement for the first time. Upon mixing with protein antigens under a controlled stoichiometric ratio, multiple proteins bind at the single chain level revealing a structural change reminiscent of compact spherical complexes or stiffened coils depending on the bound protein antigen.
View Article and Find Full Text PDFPolyphosphazenes represent a class of intrinsically flexible polyelectrolytes with potent immunoadjuvant activity, which is enabled through non-covalent self-assembly with antigenic proteins by charge complexation. The formation of supramolecular complexes between polyphosphazene adjuvant, poly[di(carboxylatophenoxy)phosphazene] (PCPP), and a model vaccine antigen, hen egg lysozyme, was studied under physiological conditions using automated dynamic light scattering titration, asymmetric flow field flow fractionation (AF4), enzyme-linked immunosorbent assay (ELISA), and fluorescent quenching methods. Three regimes of self-assembly were observed covering complexation of PCPP with lysozyme in the nano-scale range, multi-chain complexes, and larger aggregates with complexes characterized by a maximum loading of over six hundred protein molecules per PCPP chain and dissociation constant in the micromolar range ( = 7 × 10 mol/L).
View Article and Find Full Text PDFA model zwitterionic polysulfobetaine, poly(3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate) (pAPAPS), phase separates upon cooling and exhibits an upper critical solution temperature (UCST) behavior with no added salt in deuterium oxide solutions. Dynamic light scattering measurements indicate the presence of distinct fast and slow diffusive modes, where the fast mode is interpreted as a collective diffusion coefficient and the slow mode is attributed to the diffusion of multi-chain dynamic clusters. The relative population of fast and slow modes varies systematically with temperature and concentration.
View Article and Find Full Text PDFWe investigate the hydration of poly(3-[2-(acrylamido) ethyldimethylammonio] propanesulfonate) over a range of temperatures in pure water and with the inclusion of 0.1 mol/L NaCl using atomistic molecular dynamics simulation. Drawing on concepts drawn from the field of glass-forming liquids, we use the Debye-Waller parameter (<>) for describing the water mobility gradient around the polybetaine backbone extending to an overall distance ≈18 Å.
View Article and Find Full Text PDFWe examine whether the mode-coupling theory of Kawasaki and Ferrell (KF) [Kawasaki, K. Kinetic Equations and Time Correlation Functions of Critical Fluctuations. 1970, 61 (1), 1-56; Ferrell, R.
View Article and Find Full Text PDFNanostructures similar to those found in the vividly blue wings of Morpho butterflies and colorful photonic crystals enable structural color through constructive interference of light waves. Different from commonly studied structure-colored materials using periodic structures to manipulate optical properties, we report a previously unrecognized approach to precisely control the structural color and light transmission via a novel photonic colloidal gel without long-range order. Nanoparticles in this gel form micrometer-sized bicontinuous domains driven by the microphase separation of binary solvents.
View Article and Find Full Text PDFResponsive polyzwitterionic materials have become important for a range of applications such as environmental remediation and targeted drug delivery. Much is known about the macroscopic phase-behaviors of such materials, but how the smaller scale single-chain structures of polyzwitterions respond to external stimuli is not well understood, especially at temperatures close to their phase boundaries. Such chain conformation responses are important in directing larger-scale associative properties.
View Article and Find Full Text PDFAn ultra-small angle light scattering setup with the ability of simultaneous registration of scattered light by a charge-coupled device camera and the transmitted direct beam by a pin photodiode was developed. A pinhole mirror was used to reflect the scattered light; the transmitted direct beam was focused and passed through the central pinhole with a diameter of 500 μm. Time-resolved static light scattering measurement was carried out over the angular range 0.
View Article and Find Full Text PDFA synthetic strategy yielded polyelectrolytes and polyampholytes with tunable net charge for complexation and protein binding. Organocatalytic ring-opening polymerizations yielded aliphatic polycarbonates that were functionalized with both carboxylate and ammonium side chains in a post-polymerization, radical-mediated thiol-ene reaction. Incorporating net charge into the polymer architecture altered the chain dimensions in phosphate buffered solution in a manner consistent with self-complexation and complexation behavior with model proteins.
View Article and Find Full Text PDFThe interfacial tension of coacervates, the liquidlike phase composed of oppositely charged polymers that coexists at equilibrium with a supernatant, forms the basis for multiple technologies. Here we present a comprehensive set of experiments and molecular dynamics simulations to probe the effect of molecular mass on interfacial tension γ, far from the critical point, and derive γ=γ_{∞}(1-h/N), where N is the degree of polymerization, γ_{∞} is the infinite molecular mass limit, and h is a constant that physically corresponds to the number of monomers of one chain within the coacervate correlation volume.
View Article and Find Full Text PDFAssociating soft matter such as surfactants, polymers, proteins, and liposomes, may form structures with dimensions not readily accessible by optical methods. Scattering methods can provide detailed information about the mechanism of associative phase separation including nucleation density, size, and shape. Ultra-small angle neutron scattering, a reciprocal space method, provides sensitivity to submicron to micron-scale structures in a non-invasive manner and described in the context of nucleation and growth of dilute droplets formed by a temperature jump into the meta-stable region of polyelectrolyte complex coacervates.
View Article and Find Full Text PDFThe cholesterol-functionalized polycarbonate-based diblock copolymer, PEG--P(MTC-Chol), forms pathway-dependent nanostructures via dialysis-based solvent exchange. The initial organic solvent that dissolves or disperses the polymer dictates a self-assembly pathway. Depending upon the initial solvent, nanostructures of disk-like micelles, exhibiting asymmetric growth and hierarchical features, are accessible from a single amphiphilic precursor.
View Article and Find Full Text PDFBlock copolymers that exhibit both an upper critical solution temperature and a lower critical solution temperature are difficult to characterize due to inherent solubility difference between the two blocks. For example, accurate determination of both the molar mass and molar mass distribution is challenging for polyzwitterion-block-N-isopropyl acrylamide (NIPAM) copolymers in aqueous solutions due to self-assembly. However, there are a few examples of using size exclusion chromatography (SEC) for characterization, in which hexafluoro isopropanol (HFIP) is used in all cases.
View Article and Find Full Text PDFDilute droplets form upon changing the temperature of a phase separated polyelectrolyte complex coacervate. This provides an in situ approach to measure the interfacial tension between supernatant (dilute droplet) and dense coacervate by the deformed drop retraction (DDR) method. The aqueous coacervate, formed via a model 1:1 by charge stoichiometric polyelectrolyte blend, exhibits ultralow interfacial tension with the coexisting phase.
View Article and Find Full Text PDFComplexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types.
View Article and Find Full Text PDFACS Macro Lett
January 2019
A model linear oppositely charged polyelectrolyte complex exhibits phase separation upon heating consistent with lower critical solution temperature (LCST) behavior. The LCST coexistence curves narrow with increasing monovalent salt concentration ( ) that reduces the polymer concentration ( ) in the polymer-rich phase. The polymer-rich phase exhibits less hydration with increasing temperature, while an increase in increases the hydration extent.
View Article and Find Full Text PDFIn light of recent experimental observations of lower critical solution temperature (LCST) in polyelectrolyte complex coacervates (Ali, S. et al. .
View Article and Find Full Text PDFTriblock polyelectrolyte gels were characterized by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The oppositely charged end blocks self-assemble into polyelectrolyte complex cores, while the neutral poly(ethylene oxide) middle block bridges adjacent cores. The size of the polyelectrolyte complex core does not change with temperature.
View Article and Find Full Text PDFStraightforward synthesis of cholesterol functionalized aliphatic -substituted 8-membered cyclic carbonate (Chol-8m) monomer is reported. Well-defined poly(ethylene glycol) (PEG) diblock copolymers were readily accessed via organo catalytic ring opening polymerization. These polymers show promise as building blocks for self-assembled nanostructures and steric stabilizers for liposomes.
View Article and Find Full Text PDFNext-generation liposome systems for anticancer and therapeutic delivery require the precise insertion of stabilizing polymers and targeting ligands. Many of these functional macromolecules may be lost to micellization as a competing self-assembly landscape. Here, hybrid stealth liposomes, which utilize novel cholesteryl-functionalized block copolymers as the molecular stabilizer, are explored as a scalable platform to address this limitation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2018
Stimuli-responsive compounds that provide on-site, controlled antimicrobial activity promise an effective approach to prevent infections, reducing the need for systemic antibiotics. We present a novel pH-sensitive quaternary pyridinium salt (QPS), whose antibacterial activity is boosted by low pH and controlled by adjusting the pH between 4 and 8. Particularly, this compound selectively inhibits growth of acid-producing bacteria within a multispecies community.
View Article and Find Full Text PDFComplex coacervation refers to the formation of distinct liquid phases that arise when polyelectrolytes are mixed under appropriate polymer and salt concentrations. Molecular-level studies of coacervation have been limited. In this work, a coarse-grained model of the polymers and the corresponding counterions is proposed and used to simulate coacervation as a function of polymer length and overall salt concentration.
View Article and Find Full Text PDFA fluorescent pyrene probe method was applied to measure the critical micelle concentration () of oligocarbonate-fluorene end-functionalized poly(ethylene glycol) (FEF) triblock copolymers in water. The decreases with lower temperature and higher values of the hydrophobic block length, . When analyzed by a closed-assembly micelle model, the estimated energetic parameters find a negative Δ° and small positive Δ° suggestive of enthalpy-driven micellization, which differs from entropy-driven oxyethylene/oxybutylene triblock copolymers and octaethylene glycol--alkyl ethers.
View Article and Find Full Text PDF