Over the past 4 years, the authors have participated as members of the Mobilizing Computable Biomedical Knowledge Technical Infrastructure working group and focused on conceptualizing the infrastructure required to use computable biomedical knowledge. Here, we summarize our thoughts and lay the foundation for future work in the development of CBK infrastructure, including: explaining the difference between computable knowledge and data, and contextualizing the conversation with the Learning Health Systems and the FAIR principles. Specifically, we provide three guiding principles to advance the development of CBK infrastructure: (a) Promote interoperable systems for data and knowledge to be findable, accessible, interoperable, and reusable.
View Article and Find Full Text PDFThe Biomedical Research Informatics Computing System (BRICS) was developed to support multiple disease-focused research programs. Seven service modules are integrated together to provide a collaborative and extensible web-based environment. The modules-Data Dictionary, Account Management, Query Tool, Protocol and Form Research Management System, Meta Study, Data Repository and Globally Unique Identifier -facilitate the management of research protocols, to submit, process, curate, access and store clinical, imaging, and derived genomics data within the associated data repositories.
View Article and Find Full Text PDFAs information and communication technology has become pervasive in our society, we are increasingly dependent on both digital data and repositories that provide access to and enable the use of such resources. Repositories must earn the trust of the communities they intend to serve and demonstrate that they are reliable and capable of appropriately managing the data they hold.
View Article and Find Full Text PDFGenomics and molecular imaging, along with clinical and translational research have transformed biomedical science into a data-intensive scientific endeavor. For researchers to benefit from Big Data sets, developing long-term biomedical digital data preservation strategy is very important. In this opinion article, we discuss specific actions that researchers and institutions can take to make research data a continued resource even after research projects have reached the end of their lifecycle.
View Article and Find Full Text PDFBiomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems.
View Article and Find Full Text PDF